
Chapter 1:  Introduction



What is an Operating System?

 A program that acts as an intermediary between a user of a 

computer and the computer hardware

 Operating system goals:

 Execute user programs and make solving user problems 

easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner



Computer System Structure

 Computer system can be divided into four components:

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various 

applications and users

 Application programs – define the ways in which the system 

resources are used to solve the computing problems of the 

users

 Word processors, compilers, web browsers, database 

systems, video games

 Users

 People, machines, other computers



Four Components of a Computer System



What Operating Systems Do

 Depends on the point of view

 Users want convenience, ease of use and good performance 

 Don’t care about resource utilization

 But shared computer such as mainframe or minicomputer must 

keep all users happy

 Users of dedicate systems such as workstations have dedicated 

resources but frequently use shared resources from servers

 Handheld computers are resource poor,  optimized for usability 

and battery life

 Some computers have little or no user interface, such as 

embedded computers in devices and automobiles



Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and 

fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and 

improper use of the computer



Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating 

system” is a good approximation

 But varies wildly

 “The one program running at all times on the computer” is 

the kernel.

 Everything else is either

 a system program (ships with the operating system) , or

 an application program.



Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known 

as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution



Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common 

bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for 

memory cycles



Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its 

operation by causing an interrupt



Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine 

generally, through the interrupt vector, which contains the 

addresses of all the service routines

 Interrupt architecture must save the address of the 

interrupted instruction

 A trap or exception is a software-generated interrupt 

caused either by an error or a user request

 An operating system is interrupt driven



Interrupt Handling

 The operating system preserves the state of the CPU by 

storing registers and the program counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should 

be taken for each type of interrupt



Interrupt Timeline



I/O Structure

 After I/O starts, control returns to user program only upon I/O 
completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no 
simultaneous I/O processing

 After I/O starts, control returns to user program without waiting 
for I/O completion

 System call – request to the OS to allow user to wait for 
I/O completion

 Device-status table contains entry for each I/O device 
indicating its type, address, and state

 OS indexes into I/O device table to determine device 
status and to modify table entry to include interrupt



Storage Definitions and Notation Review

The basic unit of computer storage is the bit. A bit can contain one of two 
values, 0 and 1. All other storage in a computer is based on collections of bits. 
Given enough bits, it is amazing how many things a computer can represent: 
numbers, letters, images, movies, sounds, documents, and programs, to name 
a few. A byte is 8 bits, and on most computers it is the smallest convenient 
chunk of storage. For example, most computers don’t have an instruction to 
move a bit but do have one to move a byte. A less common term is word, 
which is a given computer architecture’s native unit of data. A word is made up 
of one or more bytes. For example, a computer that has 64-bit registers and 64-
bit memory addressing typically has 64-bit (8-byte) words. A computer executes 
many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured 
and manipulated in bytes and collections of bytes. 
A kilobyte, or KB, is 1,024 bytes
a megabyte, or MB, is 1,0242 bytes
a gigabyte, or GB, is 1,0243 bytes
a terabyte, or TB, is 1,0244 bytes 
a petabyte, or PB, is 1,0245 bytes

Computer manufacturers often round off these numbers and say that a 
megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking 
measurements are an exception to this general rule; they are given in bits 
(because networks move data a bit at a time).



Storage Structure

 Main memory – only large storage media that the CPU can access 

directly

 Random access

 Typically volatile

 Secondary storage – extension of main memory that provides large 

nonvolatile storage capacity

 Hard disks – rigid metal or glass platters covered with magnetic 

recording material 

 Disk surface is logically divided into tracks, which are subdivided into 

sectors

 The disk controller determines the logical interaction between the device 

and the computer 

 Solid-state disks – faster than hard disks, nonvolatile

 Various technologies

 Becoming more popular



Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage system; 

main memory can be viewed as a cache for secondary 

storage

 Device Driver for each device controller to manage I/O

 Provides uniform interface between controller and 

kernel



Storage-Device Hierarchy



Caching

 Important principle, performed at many levels in a computer 

(in hardware, operating system, software)

 Information in use copied from slower to faster storage 

temporarily

 Faster storage (cache) checked first to determine if 

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy



Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit 

information at close to memory speeds

 Device controller transfers blocks of data from buffer 

storage directly to main memory without CPU 

intervention

 Only one interrupt is generated per block, rather than 

the one interrupt per byte



How a Modern Computer Works

A von Neumann architecture



Computer-System Architecture

 Most systems use a single general-purpose processor

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types:

1. Asymmetric Multiprocessing – each processor is assigned a 

specie task.

2. Symmetric Multiprocessing – each processor performs all tasks



Symmetric Multiprocessing Architecture



A Dual-Core Design

 Multi-chip and multicore

 Systems containing all  chips

 Chassis containing multiple separate systems



Clustered Systems

 Like multiprocessor systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications, 

monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid conflicting 

operations



Clustered Systems



Operating System Structure

 Multiprogramming (Batch system) needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one 
to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs 
so frequently that users can interact with each job while it is running, creating 

interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time  CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory



Memory Layout for Multiprogrammed System



Operating-System Operations

 Interrupt driven (hardware and software)

 Hardware interrupt by one of the devices 

 Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service

 Other process problems include infinite loop, processes 
modifying each other or the operating system



Operating-System Operations (cont.)

 Dual-mode operation allows OS to protect itself and other system 
components

 User mode and kernel mode 

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user 
code or kernel code

 Some instructions designated as privileged, only 
executable in kernel mode

 System call changes mode to kernel, return from call resets 
it to user

 Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs



Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Timer is set to interrupt the computer after some time period

 Keep a counter that is decremented by the physical clock.

 Operating system set the counter (privileged instruction)

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate 

program that exceeds allotted time



Process Management

 A process is a program in execution. It is a unit of work within the 
system. Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying 
location of next instruction to execute

 Process executes instructions sequentially, one at a time, 
until completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some 
operating system running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the processes 
/ threads



Process Management Activities

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in 

connection with process management:



Memory Management

 To execute a program all (or part) of the instructions must be in 

memory

 All  (or part) of the data that is needed by the program must be in 

memory.

 Memory management determines what is in memory and when

 Optimizing CPU utilization and computer response to users

 Memory management activities

 Keeping track of which parts of memory are currently being 

used and by whom

 Deciding which processes (or parts thereof) and data to 

move into and out of memory

 Allocating and deallocating memory space as needed



Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit  - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access 
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media



Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or 

data that must be kept for a “long” period of time

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem and its 

algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed – by OS or applications

 Varies between WORM (write-once, read-many-times) and RW 

(read-write)



I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware devices 

from the user

 I/O subsystem responsible for

 Memory management of I/O including buffering (storing data 

temporarily while it is being transferred), caching (storing parts 

of data in faster storage for performance), spooling (the 

overlapping of output of one job with input of other jobs)

 General device-driver interface

 Drivers for specific hardware devices



Protection and Security

 Protection – any mechanism for controlling access of processes or 
users to resources defined by the OS

 Security – defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity 
theft, theft of service

 Systems generally first distinguish among users, to determine who 
can do what

 User identities (user IDs, security IDs) include name and 
associated number, one per user

 User ID then associated with all files, processes of that user to 
determine access control

 Group identifier (group ID) allows set of users to be defined and 
controls managed, then also associated with each process, file

 Privilege escalation allows user to change to effective ID with 
more rights
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Chapter 2:  Operating-System 

Structures
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Operating System Services

 Operating systems provide an environment for execution of programs 

and services to programs and users

 One set of operating-system services provides functions that are 

helpful to the user:

 User interface - Almost all operating systems have a user 

interface (UI).

 Varies between Command-Line (CLI), Graphics User 

Interface (GUI), Batch

 Program execution - The system must be able to load a 

program into memory and to run that program, end execution, 

either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may 

involve a file or an I/O device
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Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to 

the user (Cont.):

 File-system manipulation - The file system is of particular interest. 

Programs need to read and write files and directories, create and delete 

them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same 

computer or between computers over a network

 Communications may be via shared memory or through message 

passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user 

program

 For each type of error, OS should take the appropriate action to 

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and 

programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing

 Resource allocation - When  multiple users or multiple jobs running 
concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file storage, 
I/O devices.

 Accounting - To keep track of which users use how much and what 
kinds of computer resources

 Protection and security - The owners of information stored in a 
multiuser or networked computer system may want to control use of 
that information, concurrent processes should not interfere with each 
other

 Protection involves ensuring that all access to system resources is 
controlled

 Security of the system from outsiders requires user authentication, 
extends to defending external I/O devices from invalid access 
attempts
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A View of Operating System Services



1.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems 

program

 Sometimes multiple flavors implemented – shells

 Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of 

programs

 If the latter, adding new features doesn’t require shell 

modification
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User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause 

various actions (provide information, options, execute function, 

open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel 

underneath and shells available

 Unix and Linux have CLI with optional GUI interfaces (CDE, 

KDE, GNOME)
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Touchscreen Interfaces

 Touchscreen devices require new 

interfaces

 Mouse not possible or not desired

 Actions and selection based on 

gestures

 Virtual keyboard for text entry

 Voice commands.
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System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level 
Application Programming Interface (API) rather than 
direct system call use

 Three most common APIs are Win32 API for Windows, 
POSIX API for POSIX-based systems (including virtually 
all versions of UNIX, Linux, and Mac OS X), and Java API 
for the Java virtual machine (JVM)

Note that the system-call names used throughout this 
text are generic
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Example of System Calls

 System call sequence to copy the contents of one file to another file



1.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to 

these numbers

 The system call interface invokes  the intended system call in OS 

kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is 

implemented

 Just needs to obey API and understand what OS will do as a 

result call

 Most details of  OS interface hidden from programmer by API  

 Managed by run-time support library (set of functions built 

into libraries included with compiler)
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Types of System Calls

 Process control

 create process, terminate process

 end, abort

 load, execute

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

 Dump memory if error

 Debugger for determining bugs, single step execution

 Locks for managing access to shared data between processes
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Types of System Calls

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

 Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices
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System Programs

 System programs provide a convenient environment for program 

development and execution.  They can be divided into:

 File manipulation 

 Status information sometimes stored in a File modification

 Programming language support

 Program loading and execution

 Communications

 Background services

 Application programs

 Most users’ view of the operation system is defined by system 

programs, not the actual system calls
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System Programs

 Provide a convenient environment for program development and 
execution

 Some of them are simply user interfaces to system calls; others 
are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, 
and generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available 
memory, disk space, number of users

 Others provide detailed performance, logging, and debugging 
information

 Typically, these programs format and print the output to the 
terminal or other output devices

 Some systems implement  a registry - used to store and 
retrieve configuration information
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System Programs (Cont.)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform 
transformations of the text

 Programming-language support - Compilers, assemblers, 
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable 
loaders, linkage editors, and overlay-loaders, debugging systems 
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual 
connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens, 
browse web pages, send electronic-mail messages, log in 
remotely, transfer files from one machine to another
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System Programs (Cont.)

 Background Services

 Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling, error 
logging, printing

 Run in user context not kernel context

 Known as services, subsystems, daemons

 Application programs

 Don’t pertain to system

 Run by users

 Not typically considered part of OS

 Launched by command line, mouse click, finger poke
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Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some 

approaches have proven successful

 Internal structure of different Operating Systems  can vary widely

 Start the design by defining goals and specifications 

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, 

easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, 

implement, and maintain, as well as flexible, reliable, error-free, 

and efficient
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Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy:   What will be done?

Mechanism:  How to do it?

 Mechanisms determine how to do something, policies decide 

what will be done

 The separation of policy from mechanism is a very important 

principle, it allows maximum flexibility if policy decisions are to 

be changed later (example – timer)

 Specifying and designing an OS is highly creative task of 

software engineering
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Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL, 

Python, shell scripts

 More high-level language easier to port to other hardware

 But slower

 Emulation can allow an OS to run on non-native hardware
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Chapter 3:  Processes
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Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must 
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor 

registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time
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Process Concept (Cont.)

 Program is passive entity stored on disk (executable file), 

process is active 

 Program becomes process when executable file loaded into 

memory

 Execution of program started via GUI mouse clicks, command 

line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program
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Process in Memory
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Process State

 As a process executes, it changes state

 new:  The process is being created

 running:  Instructions are being executed

 waiting:  The process is waiting for some event to occur

 ready:  The process is waiting to be assigned to a processor

 terminated:  The process has finished execution
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Diagram of Process State
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Process Control Block (PCB)

Information associated with each process 

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of 

instruction to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities, 

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used, 

clock time elapsed since start, time 

limits

 I/O status information – I/O devices 

allocated to process, list of open files
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CPU Switch From Process to Process
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Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program 

counters in PCB

 See next chapter
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Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for 

time sharing

 Process scheduler selects among available processes for 

next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows
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Schedulers

 Short-term scheduler  (or CPU scheduler) – selects which process should 

be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds)  (must be 

fast)

 Long-term scheduler  (or job scheduler) – selects which processes should 

be brought into the ready queue

 Long-term scheduler is invoked  infrequently (seconds, minutes) 

(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts

 CPU-bound process – spends more time doing computations; few very 

long CPU bursts

 Long-term scheduler strives for good process mix
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Addition of Medium Term Scheduling

 Medium-term scheduler  can be added if degree of multiple 

programming needs to decrease

 Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping
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Context Switch

 When CPU switches to another process, the system must save 

the state of the old process and load the saved state for the 

new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful 

work while switching

 The more complex the OS and the PCB  the longer the 

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU 

 multiple contexts loaded at once
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Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination, 

 and so on as detailed next
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Process Creation

 Parent process create children processes, which, in turn 

create other processes, forming a tree of processes

 Generally, process identified and managed via a process 

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate
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A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298
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Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the 

process’ memory space with a new program



1.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating 
system to delete it using the exit() system call.

 Returns  status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes  using 
the abort() system call.  Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not 

allow  a child to continue if its parent terminates
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Process Termination

 Some operating systems do not allow child to exists if its parent 

has terminated.  If a process terminates, then all its children must 

also be terminated.

 cascading termination.  All children, grandchildren, etc.  are  

terminated.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by 
using the wait()system call. The call returns status information 

and the pid of the terminated process

pid = wait(&status); 

 If no parent waiting (did not invoke wait()) process is a zombie

 If parent terminated without invoking wait , process is an orphan
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Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, 

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing
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Chapter 4:  Threads
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Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by 

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is 

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded
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Multithreaded Server Architecture
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Benefits

 Responsiveness – may allow continued execution if part of 

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier 

than shared memory or message passing

 Economy – cheaper than process creation, thread switching 

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor 

architectures
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Multicore Programming

 Multicore or multiprocessor systems putting pressure on 

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task 

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency
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Multicore Programming (Cont.)

 Types of parallelism 

 Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each 

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core
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Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:
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Single and Multithreaded Processes
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Amdahl’s Law

 Identifies performance gains from adding additional cores to an 

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on 

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?
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User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows 

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X
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Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many
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Many-to-One

 Many user-level threads mapped to 

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel 

on muticore system because only one 

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads
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One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes 

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later
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Many-to-Many Model

 Allows many user level threads to be 

mapped to many kernel threads

 Allows the  operating system to create 

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows  with the ThreadFiber
package
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Two-level Model

 Similar to M:M, except that it allows a user thread to be 

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier
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Chapter 6:  CPU Scheduling
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Basic Concepts

 Maximum CPU utilization 

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main 

concern
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CPU Scheduler

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities
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Dispatcher

 Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to 

restart that program

 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running
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Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per 

time unit

 Turnaround time – amount of time to execute a particular 

process

 Waiting time – amount of time a process has been waiting in the 

ready queue

 Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 

time-sharing environment)
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Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time 

 Min waiting time 

 Min response time
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time:  (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes
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P
2

P
3
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Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest 

time

 SJF is optimal – gives minimum average waiting time for a given 

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user
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Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
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Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to 

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec
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Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted 

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the 

process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec
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Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), 

usually 10-100 milliseconds.  After this time has elapsed, the 

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time in 

chunks of at most q time units at once.  No process waits more 

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, 

otherwise overhead is too high
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Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is: 

 Typically, higher average turnaround than SJF, but better 
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec
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Time Quantum and Context Switch Time
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Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 

foreground in RR

 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

 A process can move between the various queues; aging can be 

implemented this way

 Multilevel-feedback-queue scheduler defined by the following 

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter 

when that process needs service
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Example of Multilevel Feedback Queue

 Three queues: 

 Q0 – RR with time quantum 8 

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is 

served FCFS

 When it gains CPU, job receives 8 

milliseconds

 If it does not finish in 8 

milliseconds, job is moved to 

queue Q1

 At Q1 job is again served FCFS and 

receives 16 additional milliseconds

 If it still does not complete, it is 

preempted and moved to queue Q2
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Chapter 7:  Deadlocks
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System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi

instances.

Each process utilizes a resource as 

follows:

 request 

 use 

 release
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Deadlock Characterization

Mutual exclusion: only one 

process at a time can use a 

resource

Hold and wait: a process 

holding at least one resource is 

waiting to acquire additional 

resources held by other 

processes

No preemption: a resource can 

be released only voluntarily by the 

process holding it, after that 

Deadlock can arise if four conditions hold simultaneously.
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Resource-Allocation Graph

V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting 

of all the processes in the system

R = {R1, R2, …, Rm}, the set 

consisting of all resource types in the 

system

 request edge – directed edge Pi 

 Rj

 assignment edge – directed edge 

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of RjPi

Pi

Rj

Rj
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Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock
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Graph With A Cycle But No Deadlock
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Basic Facts

 If graph contains no cycles 

no deadlock

 If graph contains a cycle 

 if only one instance per resource 

type, then deadlock

 if several instances per resource 

type, possibility of deadlock



1.125 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

Ensure that the system will 

never enter a deadlock state:

Deadlock prevention

Deadlock avoidence

Allow the system to enter a 

deadlock state and then 

recover

 Ignore the problem and 

pretend that deadlocks never 

occur in the system; used by 

most operating systems, 
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Deadlock Prevention

Mutual Exclusion – not required 

for sharable resources (e.g., 

read-only files); must hold for 

non-sharable resources

Hold and Wait – must guarantee 

that whenever a process 

requests a resource, it does not 

hold any other resources

Require process to request and be 

allocated all its resources before it 

begins execution, or allow process 

Restrain the ways request can be made
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Deadlock Prevention (Cont.)

No Preemption –

 If a process that is holding some 

resources requests another 

resource that cannot be immediately 

allocated to it, then all resources 

currently being held are released

 Preempted resources are added to 

the list of resources for which the 

process is waiting

 Process will be restarted only when 

it can regain its old resources, as 

well as the new ones that it is 

requesting
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Deadlock Avoidance

Simplest and most useful model 

requires that each process 

declare the maximum number of 

resources of each type that it may 

need

The deadlock-avoidance 

algorithm dynamically examines 

the resource-allocation state to 

ensure that there can never be a 

circular-wait condition

Requires that the system has some additional a priori information 

available
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Safe State

When a process requests an 

available resource, system must 

decide if immediate allocation leaves 

the system in a safe state

System is in safe state if there exists 

a sequence <P1, P2, …, Pn> of ALL 

the  processes  in the systems such 

that  for each Pi, the resources that Pi 

can still request can be satisfied by 

currently available resources + 

resources held by all the Pj, with j < I

That is:
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Basic Facts

 If a system is in safe state  no 

deadlocks

 If a system is in unsafe state 

possibility of deadlock

Avoidance  ensure that a 

system will never enter an unsafe 

state.
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Safe, Unsafe, Deadlock State 



1.132 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Avoidance Algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource 

type

 Use the banker’s algorithm
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Resource-Allocation Graph Scheme

Claim edge Pi  Rj indicated that 

process Pj may request resource 

Rj; represented by a dashed line

Claim edge converts to request 

edge when a process requests a 

resource

Request edge converted to an 

assignment edge when the  

resource is allocated to the process

When a resource is released by a 

process, assignment edge 
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Resource-Allocation Graph
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Unsafe State In Resource-Allocation Graph



1.136 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

Suppose that process Pi

requests a resource Rj

The request can be granted 

only if converting the request 

edge to an assignment edge 

does not result in the 

formation of a cycle in the 

resource allocation graph



1.137 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

Multiple instances

Each process must a priori claim 

maximum use

When a process requests a 

resource it may have to wait  

When a process gets all its 

resources it must return them in a 

finite amount of time
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Recovery from Deadlock:  Process Termination

Abort all deadlocked processes

Abort one process at a time until the 

deadlock cycle is eliminated

 In which order should we choose to 

abort?

1. Priority of the process

2. How long process has computed, and 

how much longer to completion

3. Resources the process has used
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Recovery from Deadlock:  Resource Preemption

Selecting a victim – minimize 

cost

Rollback – return to some safe 

state, restart process for that state

Starvation – same process may 

always be picked as victim, 

include number of rollback in cost 

factor
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Chapter 8:  Main Memory
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Background

 Program must be brought (from disk)  into memory and 

placed within a process for it to be run

 Main memory and registers are only storage CPU can 

access directly

 Memory unit only sees a stream of addresses + read 

requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation
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Base and Limit Registers

 A pair of base and limit registers define the logical address space

 CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user
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Hardware Address Protection
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a 

separate physical address space is central to proper memory 

management

 Logical address – generated by the CPU; also referred to 

as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time 

and load-time address-binding schemes; logical (virtual) and 

physical addresses differ in execution-time address-binding 

scheme

 Logical address space is the set of all logical addresses 

generated by a program

 Physical address space is the set of all physical addresses 

generated by a program
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Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical 

address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the 

relocation register is added to every address generated by a 

user process at the time it is sent to memory

 Base register now called relocation register

 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the 

real physical addresses

 Execution-time binding occurs when reference is made to 

location in memory

 Logical address bound to physical addresses
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Dynamic relocation using a relocation register

 Routine is not loaded until it is 

called

 Better memory-space utilization; 

unused routine is never loaded

 All routines kept on disk in 

relocatable load format

 Useful when large amounts of 

code are needed to handle 

infrequently occurring cases

 No special support from the 

operating system is required

 Implemented through program 

design

 OS can help by providing libraries 

to implement dynamic loading
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Dynamic Linking

 Static linking – system libraries and program code combined by 

the loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate 

memory-resident library routine

 Stub replaces itself with the address of the routine, and executes 

the routine

 Operating system checks if routine is in processes’ memory 

address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed
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Swapping

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution

 Total physical memory space of processes can exceed 
physical memory

 Backing store – fast disk large enough to accommodate copies 
of all memory images for all users; must provide direct access to 
these memory images

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes 
which have memory images on disk
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Swapping (Cont.)

 Does the swapped out process need to swap back in to same 
physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory space

 Modified versions of swapping are found on many systems (i.e., 
UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below 

threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to 

swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of 

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 4000ms 

(4 seconds)

 Can reduce if reduce size of memory swapped – by knowing 

how much memory really being used

 System calls to inform OS of memory use via 
request_memory() and release_memory()
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Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong 

process

 Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

 Swap only when free memory extremely low
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Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with 

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of 

memory
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Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from each 

other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each 

logical address must be less than the limit register 

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being transient 

and kernel changing size
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Hardware Support for Relocation and Limit Registers
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Multiple-partition allocation

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered 

throughout memory

 When a process arrives, it is allocated memory from a hole large enough to 

accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size  

 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization
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Fragmentation

 External Fragmentation – total memory space exists to 

satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly 

larger than requested memory; this size difference is memory 

internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together 

in one large block

 Compaction is possible only if relocation is dynamic, and is 

done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation 

problems
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Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure 

function

method

object

local variables, global variables

common block

stack

symbol table

arrays
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User’s View of a Program
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space
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Segmentation Architecture 

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each 

table entry has:

 base – contains the starting physical address where the 

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment 

table’s location in memory

 Segment-table length register (STLR) indicates number of 

segments used by a program;

segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing 

occurs at segment level

 Since segments vary in length, memory allocation is a 

dynamic storage-allocation problem

 A segmentation example is shown in the following diagram
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Segmentation Hardware
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Paging

 Physical  address space of a process can be noncontiguous; 

process is allocated physical memory whenever the latter is 

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and 

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n
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Paging Hardware
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Paging Model of Logical and  Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

 By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page 

table

 In this scheme every data/instruction access requires two 

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of 

a special fast-lookup hardware cache called associative 

memory or translation look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each 

TLB entry – uniquely identifies each process to provide 

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access 

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast 

access
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Associative Memory

 Associative memory – parallel search 

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Memory Protection

 Memory protection implemented by associating protection bit 

with each frame to indicate if read-only or read-write access is 

allowed

 Can also add more bits to indicate page execute-only, and 

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel
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Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process space

 Also useful for interprocess communication if sharing of 

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear 

anywhere in the logical address space
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Structure of the Page Table

 Memory structures for paging can get huge using straight-

forward methods

 Consider a 32-bit logical address space as on modern 

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / 

memory for page table alone

 That amount of memory used to cost a lot

 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables
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Chapter 11:  

File-System Interface
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Chapter 11:  File-System Interface

 File Concept

 Access Methods

 Disk and Directory Structure

 File-System Mounting

 File Sharing

 Protection
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File Concept

 Contiguous logical address space

 Types: 

 Data

 numeric

 character

 binary

 Program

 Contents defined by file’s creator

 Many types

 Consider text file, source file, executable file
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File Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, 

and usage monitoring

 Information about files are kept in the directory structure, which is 

maintained on the disk

 Many variations, including extended file attributes such as file 

checksum

 Information kept in the directory structure
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File Operations

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, 

and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to 

directory structure on disk
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Open Files

 Several pieces of data are needed to manage open files:

 Open-file table: tracks open files

 File pointer:  pointer to last read/write location, per 

process that has the file open

 File-open count: counter of number of times a file is 

open – to allow removal of data from open-file table when 

last processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information
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File Types – Name, Extension
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File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines 

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting 
appropriate control characters

 Who decides:

 Operating system

 Program
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Sequential-access File
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Access Methods

 Sequential Access
read next

write next 

reset

no read after last write

(rewrite)

 Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next 

rewrite n

n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12
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Simulation of Sequential Access on Direct-access File
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Other Access Methods

 Can be built on top of base methods

 General involve creation of an index for the file

 Keep index in memory for fast determination of location of 
data to be operated on (consider UPC code plus record of 
data about that item)

 If too large, index (in memory) of the index (on disk)

 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary 
index

 File kept sorted on a defined key

 All done by the OS

 VMS operating system provides index and relative files as 
another example (see next slide)
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Example of Index and Relative Files
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Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
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Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system, or 

formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file 

system’s info in device directory or volume table of contents

 As well as general-purpose file systems there are many 

special-purpose file systems, frequently all within the same 

operating system or computer
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A Typical File-system Organization
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Types of File Systems

 We mostly talk of general-purpose file systems

 But systems frequently have may file systems, some general- and 

some special- purpose

 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O

 objfs – interface into kernel memory to get kernel symbols for 

debugging

 ctfs – contract file system for managing daemons 

 lofs – loopback file system allows one FS to be accessed in 

place of another

 procfs – kernel interface to process structures

 ufs, zfs – general purpose file systems
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Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system
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Directory Organization

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all 

Java programs, all games, …)

The directory is organized logically  to obtain 
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Single-Level Directory

 A single directory for all users

 Naming problem

 Grouping problem
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Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability
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Tree-Structured Directories
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Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list
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Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example:  if in current directory   /mail

mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”
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Acyclic-Graph Directories

 Have shared subdirectories and files
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Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer

Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file



1.206 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory
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General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection 

algorithm to determine whether it is OK
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File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a 

mount point
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Mount Point
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File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing 

method

 If multi-user system

 User IDs identify users, allowing permissions and 

protections to be per-user

Group IDs allow users to be in groups, permitting group 

access rights

 Owner of a file / directory

 Group of a file / directory
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Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List
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Access Lists and Groups

 Mode of access:  read, write, execute

 Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0

RWX

c) public access 1  0 0 1

 Ask manager to create a group (unique name), say G, and add 
some users to the group.

 For a particular file (say game) or subdirectory, define an 
appropriate access.

Attach a group to a file
chgrp     G    game
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Windows 7 Access-Control List Management
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Chapter 12:  File System 

Implementation
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Chapter 12: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System
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File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing 

data to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512 

bytes)

 File control block – storage structure consisting of information 

about a file

 Device driver controls the physical device 

 File system organized into layers
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Layered File System
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File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector 

10, into memory location 1060” outputs low-level hardware 

specific commands to hardware controller

 Basic file system given command like “retrieve block 123”
translates to device driver

 Also manages memory buffers and caches (allocation, freeing, 

replacement) 

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and 

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation
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File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by 

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but 

adds overhead and can decrease performanceTranslates file 

name into file number, file handle, location by maintaining file 

control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method 

according to OS designer
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File System Layers (Cont.)

 Many file systems, sometimes many within an operating 

system

 Each with its own format (CD-ROM is ISO 9660; Unix has 

UFS, FFS;  Windows has FAT, FAT32, NTFS as well as 

floppy, CD, DVD Blu-ray, Linux has more than 40 types, 

with extended file system ext2 and ext3 leading; plus 

distributed file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM, 

FUSE
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File-System Implementation

 We have system calls at the API level, but how do we implement 

their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS 

from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains 

volume details

 Total # of blocks, # of free blocks, block size, free block 

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table
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File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about 

the file

 inode number, permissions, size, dates

 NFTS stores into in master file table  using relational DB 

structures
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In-Memory File System Structures

 Mount table storing file system mounts, mount points, file 

system types

 The following figure illustrates the necessary file system 

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process 

memory address
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In-Memory File System Structures
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Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or 

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that 

contain enough code to know how to load the kernel from the file 

system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other 

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access
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Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use 

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the 

same location

 Only good if entries are fixed size, or use chained-overflow 

method
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Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for 

files:

 Contiguous allocation – each file occupies set of contiguous 

blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number 

of blocks) are required

 Problems include finding space for file, knowing file size, 

external fragmentation, need for compaction off-line

(downtime) or on-line
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Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q + 

starting address

Displacement into block = R
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Extent-Based Systems

 Many newer file systems (i.e., Veritas File System) use a 

modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents
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Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block 

needed

 Improve efficiency by clustering blocks into groups but 

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks
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Allocation Methods – Linked (Cont.)

 FAT (File Allocation Table) variation

 Beginning of volume has table, indexed by block number

 Much like a linked list, but faster on disk and cacheable 

 New block allocation simple
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Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered 

anywhere on the disk

pointerblock      =

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks 

representing the file.

Displacement into block = R + 1

LA/511

Q

R
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Linked Allocation
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File-Allocation Table
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Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table
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Example of Indexed Allocation
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Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead 
of index block

 Mapping from logical to physical in a file of maximum size of 256K 
bytes and block size of 512 bytes.  We need only 1 block for index 
table

LA/512

Q

R

Q = displacement into index table

R = displacement into block
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Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length (block 
size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:
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Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer 

index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:
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Indexed Allocation – Mapping (Cont.)



1.241 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance

 Best method depends on file access type

 Contiguous great for sequential and random

 Linked good for sequential, not random

 Declare access type at creation -> select either contiguous or 

linked

 Indexed more complex

 Single block access could require 2 index block reads then 

data block read

 Clustering can help improve throughput, reduce CPU 

overhead
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Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O is 

reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one 

disk I/O 

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during 

one disk I/O
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Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit
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Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 4KB =  212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files
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Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous 
space easily

 No waste of space

 No need to traverse the 
entire list (if # free blocks 
recorded)
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Free-Space Management (Cont.)

 Grouping 

 Modify linked list to store address of next n-1 free blocks in first 
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting

 Because space is frequently contiguously used and freed,  with 
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free 
blocks

 Free space list then has entries containing addresses and 
counts
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Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory -> 
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree 
structure, indexed  by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry
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Chapter 13:  I/O Systems
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Overview

 I/O management is a major component of operating system 

design and operation

 Important aspect of computer operation

 I/O devices vary greatly

 Various methods to control them

 Performance management 

 New types of devices frequent

 Ports, busses, device controllers connect to various devices

 Device drivers encapsulate device details

 Present uniform device-access interface to I/O subsystem
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I/O Hardware

 Incredible variety of I/O devices

 Storage

 Transmission

 Human-interface

 Common concepts – signals from I/O devices interface with computer

 Port – connection point for device

 Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe) 

 expansion bus connects relatively slow devices

 Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode, 

memory, etc
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A Typical PC Bus Structure
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I/O Hardware (Cont.)

 I/O instructions control devices

 Devices usually have registers where device driver places 

commands, addresses, and data to write, or read data from 

registers after command execution

 Data-in register, data-out register, status register, control 

register

 Typically 1-4 bytes, or FIFO buffer

 Devices have addresses, used by 

 Direct I/O instructions

 Memory-mapped I/O

 Device data and command registers mapped to 

processor address space

 Especially for large address spaces (graphics)
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Device I/O Port Locations on PCs (partial)
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Polling

 For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out 

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when 

transfer done

 Step 1 is busy-wait cycle to wait for I/O from device

 Reasonable if device is fast

 But inefficient if device slow

 CPU switches to other tasks?

 But if miss a cycle data overwritten / lost
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Interrupts

 Polling can happen in 3 instruction cycles

 Read status, logical-and to extract status bit, branch if not zero

 How to be more efficient if non-zero infrequently?

 CPU Interrupt-request line triggered by I/O device

 Checked by processor after each instruction

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Context switch at start and end

 Based on priority

 Some nonmaskable

 Interrupt chaining if more than one device at same interrupt 

number
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Interrupt-Driven I/O Cycle
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Interrupts (Cont.)

 Interrupt mechanism also used for exceptions

 Terminate process, crash system due to hardware error

 Page fault executes when memory access error

 System call executes via trap to trigger kernel to execute 

request

 Multi-CPU systems can process interrupts concurrently

 If operating system designed to handle it

 Used for time-sensitive processing, frequent, must be fast
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Direct Memory Access

 Used to avoid programmed I/O (one byte at a time) for large data 

movement 

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and 

memory 

 OS writes DMA command block into memory 

 Source and destination addresses

 Read or write mode

 Count of bytes

 Writes location of command block to DMA controller

 Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

 When done, interrupts to signal completion

 Version that is aware of virtual addresses can be even more efficient -

DVMA
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Six Step Process to Perform DMA Transfer
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Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 New devices talking already-implemented protocols need no extra 

work

 Each OS has its own I/O subsystem structures and device driver 

frameworks

 Devices vary in many dimensions

 Character-stream or block

 Sequential or random-access

 Synchronous or asynchronous (or both)

 Sharable or dedicated

 Speed of operation

 read-write, read only, or write only
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A Kernel I/O Structure
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Characteristics of I/O Devices
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Characteristics of I/O Devices (Cont.)

 Subtleties of devices handled by device drivers

 Broadly I/O devices can be grouped by the OS into

 Block I/O

 Character I/O (Stream)

 Memory-mapped file access

 Network sockets

 For direct manipulation of I/O device specific characteristics, 

usually an escape / back door

 Unix ioctl() call to send arbitrary bits to a device control 

register and data to device data register
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Block and Character Devices

 Block devices include disk drives

 Commands include read, write, seek 

 Raw I/O, direct I/O, or file-system access

 Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via 

demand paging

 DMA

 Character devices include keyboards, mice, serial ports

 Commands include get(), put()

 Libraries layered on top allow line editing



1.265 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network Devices

 Varying enough from block and character to have own 

interface

 Linux, Unix, Windows and many others include socket 

interface

 Separates network protocol from network operation

 Includes select() functionality

 Approaches vary widely (pipes, FIFOs, streams, queues, 

mailboxes)
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Clocks and Timers

 Provide current time, elapsed time, timer

 Normal resolution about 1/60 second

 Some systems provide higher-resolution timers

 Programmable interval timer used for timings, periodic 

interrupts

 ioctl() (on UNIX) covers odd aspects of I/O such as 

clocks and timers
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Nonblocking and Asynchronous I/O

 Blocking - process suspended until I/O completed

 Easy to use and understand

 Insufficient for some needs

 Nonblocking - I/O call returns as much as available

 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

 select() to find if data ready then read() or write()

to transfer

 Asynchronous - process runs while I/O executes

 Difficult to use

 I/O subsystem signals process when I/O completed
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Two I/O Methods

Synchronous Asynchronous
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Vectored I/O

 Vectored I/O allows one system call to perform multiple I/O 

operations

 For example, Unix readve() accepts a vector of multiple 

buffers to read into or write from

 This scatter-gather method better than multiple individual I/O 

calls

 Decreases context switching and system call overhead

 Some versions provide atomicity

 Avoid for example worry about multiple threads 

changing data as reads / writes occurring 
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Kernel I/O Subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Some implement Quality Of Service (i.e. IPQOS)

 Buffering - store data in memory while transferring between devices

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

 Double buffering – two copies of the data

 Kernel and user

 Varying sizes

 Full  / being processed and not-full / being used

 Copy-on-write can be used for efficiency in some cases
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Device-status Table
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Kernel I/O Subsystem

 Caching - faster device holding copy of data

 Always just a copy

 Key to performance

 Sometimes combined with buffering

 Spooling - hold output for a device

 If device can serve only one request at a time 

 i.e., Printing

 Device reservation - provides exclusive access to a device

 System calls for allocation and de-allocation

 Watch out for deadlock
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Error Handling

 OS can recover from disk read, device unavailable, transient 

write failures

 Retry a read or write, for example

 Some systems more advanced – Solaris FMA, AIX 

 Track error frequencies, stop using device with 

increasing frequency of retry-able errors

 Most return an error number or code when I/O request fails 

 System error logs hold problem reports
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I/O Protection

 User process may accidentally or purposefully attempt to 

disrupt normal operation via illegal I/O instructions

 All I/O instructions defined to be privileged

 I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must 

be protected too
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Use of a System Call to Perform I/O
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I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

 Determine device holding file 

 Translate name to device representation

 Physically read data from disk into buffer

 Make data available to requesting process

 Return control to process
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Life Cycle of An I/O Request


