
Chapter 1:  Introduction



What is an Operating System?

 A program that acts as an intermediary between a user of a 

computer and the computer hardware

 Operating system goals:

 Execute user programs and make solving user problems 

easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner



Computer System Structure

 Computer system can be divided into four components:

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various 

applications and users

 Application programs – define the ways in which the system 

resources are used to solve the computing problems of the 

users

 Word processors, compilers, web browsers, database 

systems, video games

 Users

 People, machines, other computers



Four Components of a Computer System



What Operating Systems Do

 Depends on the point of view

 Users want convenience, ease of use and good performance 

 Don’t care about resource utilization

 But shared computer such as mainframe or minicomputer must 

keep all users happy

 Users of dedicate systems such as workstations have dedicated 

resources but frequently use shared resources from servers

 Handheld computers are resource poor,  optimized for usability 

and battery life

 Some computers have little or no user interface, such as 

embedded computers in devices and automobiles



Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and 

fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and 

improper use of the computer



Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating 

system” is a good approximation

 But varies wildly

 “The one program running at all times on the computer” is 

the kernel.

 Everything else is either

 a system program (ships with the operating system) , or

 an application program.



Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known 

as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution



Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common 

bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for 

memory cycles



Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its 

operation by causing an interrupt



Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine 

generally, through the interrupt vector, which contains the 

addresses of all the service routines

 Interrupt architecture must save the address of the 

interrupted instruction

 A trap or exception is a software-generated interrupt 

caused either by an error or a user request

 An operating system is interrupt driven



Interrupt Handling

 The operating system preserves the state of the CPU by 

storing registers and the program counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should 

be taken for each type of interrupt



Interrupt Timeline



I/O Structure

 After I/O starts, control returns to user program only upon I/O 
completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no 
simultaneous I/O processing

 After I/O starts, control returns to user program without waiting 
for I/O completion

 System call – request to the OS to allow user to wait for 
I/O completion

 Device-status table contains entry for each I/O device 
indicating its type, address, and state

 OS indexes into I/O device table to determine device 
status and to modify table entry to include interrupt



Storage Definitions and Notation Review

The basic unit of computer storage is the bit. A bit can contain one of two 
values, 0 and 1. All other storage in a computer is based on collections of bits. 
Given enough bits, it is amazing how many things a computer can represent: 
numbers, letters, images, movies, sounds, documents, and programs, to name 
a few. A byte is 8 bits, and on most computers it is the smallest convenient 
chunk of storage. For example, most computers don’t have an instruction to 
move a bit but do have one to move a byte. A less common term is word, 
which is a given computer architecture’s native unit of data. A word is made up 
of one or more bytes. For example, a computer that has 64-bit registers and 64-
bit memory addressing typically has 64-bit (8-byte) words. A computer executes 
many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured 
and manipulated in bytes and collections of bytes. 
A kilobyte, or KB, is 1,024 bytes
a megabyte, or MB, is 1,0242 bytes
a gigabyte, or GB, is 1,0243 bytes
a terabyte, or TB, is 1,0244 bytes 
a petabyte, or PB, is 1,0245 bytes

Computer manufacturers often round off these numbers and say that a 
megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking 
measurements are an exception to this general rule; they are given in bits 
(because networks move data a bit at a time).



Storage Structure

 Main memory – only large storage media that the CPU can access 

directly

 Random access

 Typically volatile

 Secondary storage – extension of main memory that provides large 

nonvolatile storage capacity

 Hard disks – rigid metal or glass platters covered with magnetic 

recording material 

 Disk surface is logically divided into tracks, which are subdivided into 

sectors

 The disk controller determines the logical interaction between the device 

and the computer 

 Solid-state disks – faster than hard disks, nonvolatile

 Various technologies

 Becoming more popular



Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage system; 

main memory can be viewed as a cache for secondary 

storage

 Device Driver for each device controller to manage I/O

 Provides uniform interface between controller and 

kernel



Storage-Device Hierarchy



Caching

 Important principle, performed at many levels in a computer 

(in hardware, operating system, software)

 Information in use copied from slower to faster storage 

temporarily

 Faster storage (cache) checked first to determine if 

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy



Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit 

information at close to memory speeds

 Device controller transfers blocks of data from buffer 

storage directly to main memory without CPU 

intervention

 Only one interrupt is generated per block, rather than 

the one interrupt per byte



How a Modern Computer Works

A von Neumann architecture



Computer-System Architecture

 Most systems use a single general-purpose processor

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types:

1. Asymmetric Multiprocessing – each processor is assigned a 

specie task.

2. Symmetric Multiprocessing – each processor performs all tasks



Symmetric Multiprocessing Architecture



A Dual-Core Design

 Multi-chip and multicore

 Systems containing all  chips

 Chassis containing multiple separate systems



Clustered Systems

 Like multiprocessor systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications, 

monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid conflicting 

operations



Clustered Systems



Operating System Structure

 Multiprogramming (Batch system) needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one 
to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs 
so frequently that users can interact with each job while it is running, creating 

interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time  CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory



Memory Layout for Multiprogrammed System



Operating-System Operations

 Interrupt driven (hardware and software)

 Hardware interrupt by one of the devices 

 Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service

 Other process problems include infinite loop, processes 
modifying each other or the operating system



Operating-System Operations (cont.)

 Dual-mode operation allows OS to protect itself and other system 
components

 User mode and kernel mode 

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user 
code or kernel code

 Some instructions designated as privileged, only 
executable in kernel mode

 System call changes mode to kernel, return from call resets 
it to user

 Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs



Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Timer is set to interrupt the computer after some time period

 Keep a counter that is decremented by the physical clock.

 Operating system set the counter (privileged instruction)

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate 

program that exceeds allotted time



Process Management

 A process is a program in execution. It is a unit of work within the 
system. Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying 
location of next instruction to execute

 Process executes instructions sequentially, one at a time, 
until completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some 
operating system running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the processes 
/ threads



Process Management Activities

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in 

connection with process management:



Memory Management

 To execute a program all (or part) of the instructions must be in 

memory

 All  (or part) of the data that is needed by the program must be in 

memory.

 Memory management determines what is in memory and when

 Optimizing CPU utilization and computer response to users

 Memory management activities

 Keeping track of which parts of memory are currently being 

used and by whom

 Deciding which processes (or parts thereof) and data to 

move into and out of memory

 Allocating and deallocating memory space as needed



Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit  - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access 
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media



Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or 

data that must be kept for a “long” period of time

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem and its 

algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed – by OS or applications

 Varies between WORM (write-once, read-many-times) and RW 

(read-write)



I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware devices 

from the user

 I/O subsystem responsible for

 Memory management of I/O including buffering (storing data 

temporarily while it is being transferred), caching (storing parts 

of data in faster storage for performance), spooling (the 

overlapping of output of one job with input of other jobs)

 General device-driver interface

 Drivers for specific hardware devices



Protection and Security

 Protection – any mechanism for controlling access of processes or 
users to resources defined by the OS

 Security – defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity 
theft, theft of service

 Systems generally first distinguish among users, to determine who 
can do what

 User identities (user IDs, security IDs) include name and 
associated number, one per user

 User ID then associated with all files, processes of that user to 
determine access control

 Group identifier (group ID) allows set of users to be defined and 
controls managed, then also associated with each process, file

 Privilege escalation allows user to change to effective ID with 
more rights
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Chapter 2:  Operating-System 

Structures
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Operating System Services

 Operating systems provide an environment for execution of programs 

and services to programs and users

 One set of operating-system services provides functions that are 

helpful to the user:

 User interface - Almost all operating systems have a user 

interface (UI).

 Varies between Command-Line (CLI), Graphics User 

Interface (GUI), Batch

 Program execution - The system must be able to load a 

program into memory and to run that program, end execution, 

either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may 

involve a file or an I/O device
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Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to 

the user (Cont.):

 File-system manipulation - The file system is of particular interest. 

Programs need to read and write files and directories, create and delete 

them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same 

computer or between computers over a network

 Communications may be via shared memory or through message 

passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user 

program

 For each type of error, OS should take the appropriate action to 

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and 

programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing

 Resource allocation - When  multiple users or multiple jobs running 
concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file storage, 
I/O devices.

 Accounting - To keep track of which users use how much and what 
kinds of computer resources

 Protection and security - The owners of information stored in a 
multiuser or networked computer system may want to control use of 
that information, concurrent processes should not interfere with each 
other

 Protection involves ensuring that all access to system resources is 
controlled

 Security of the system from outsiders requires user authentication, 
extends to defending external I/O devices from invalid access 
attempts
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A View of Operating System Services
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User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems 

program

 Sometimes multiple flavors implemented – shells

 Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of 

programs

 If the latter, adding new features doesn’t require shell 

modification
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User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause 

various actions (provide information, options, execute function, 

open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel 

underneath and shells available

 Unix and Linux have CLI with optional GUI interfaces (CDE, 

KDE, GNOME)
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Touchscreen Interfaces

 Touchscreen devices require new 

interfaces

 Mouse not possible or not desired

 Actions and selection based on 

gestures

 Virtual keyboard for text entry

 Voice commands.
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System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level 
Application Programming Interface (API) rather than 
direct system call use

 Three most common APIs are Win32 API for Windows, 
POSIX API for POSIX-based systems (including virtually 
all versions of UNIX, Linux, and Mac OS X), and Java API 
for the Java virtual machine (JVM)

Note that the system-call names used throughout this 
text are generic
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Example of System Calls

 System call sequence to copy the contents of one file to another file
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System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to 

these numbers

 The system call interface invokes  the intended system call in OS 

kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is 

implemented

 Just needs to obey API and understand what OS will do as a 

result call

 Most details of  OS interface hidden from programmer by API  

 Managed by run-time support library (set of functions built 

into libraries included with compiler)
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Types of System Calls

 Process control

 create process, terminate process

 end, abort

 load, execute

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

 Dump memory if error

 Debugger for determining bugs, single step execution

 Locks for managing access to shared data between processes
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Types of System Calls

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

 Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices
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System Programs

 System programs provide a convenient environment for program 

development and execution.  They can be divided into:

 File manipulation 

 Status information sometimes stored in a File modification

 Programming language support

 Program loading and execution

 Communications

 Background services

 Application programs

 Most users’ view of the operation system is defined by system 

programs, not the actual system calls
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System Programs

 Provide a convenient environment for program development and 
execution

 Some of them are simply user interfaces to system calls; others 
are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, 
and generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available 
memory, disk space, number of users

 Others provide detailed performance, logging, and debugging 
information

 Typically, these programs format and print the output to the 
terminal or other output devices

 Some systems implement  a registry - used to store and 
retrieve configuration information
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System Programs (Cont.)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform 
transformations of the text

 Programming-language support - Compilers, assemblers, 
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable 
loaders, linkage editors, and overlay-loaders, debugging systems 
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual 
connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens, 
browse web pages, send electronic-mail messages, log in 
remotely, transfer files from one machine to another
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System Programs (Cont.)

 Background Services

 Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling, error 
logging, printing

 Run in user context not kernel context

 Known as services, subsystems, daemons

 Application programs

 Don’t pertain to system

 Run by users

 Not typically considered part of OS

 Launched by command line, mouse click, finger poke
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Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some 

approaches have proven successful

 Internal structure of different Operating Systems  can vary widely

 Start the design by defining goals and specifications 

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, 

easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, 

implement, and maintain, as well as flexible, reliable, error-free, 

and efficient
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Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy:   What will be done?

Mechanism:  How to do it?

 Mechanisms determine how to do something, policies decide 

what will be done

 The separation of policy from mechanism is a very important 

principle, it allows maximum flexibility if policy decisions are to 

be changed later (example – timer)

 Specifying and designing an OS is highly creative task of 

software engineering
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Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL, 

Python, shell scripts

 More high-level language easier to port to other hardware

 But slower

 Emulation can allow an OS to run on non-native hardware
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Chapter 3:  Processes
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Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must 
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor 

registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time
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Process Concept (Cont.)

 Program is passive entity stored on disk (executable file), 

process is active 

 Program becomes process when executable file loaded into 

memory

 Execution of program started via GUI mouse clicks, command 

line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program
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Process in Memory
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Process State

 As a process executes, it changes state

 new:  The process is being created

 running:  Instructions are being executed

 waiting:  The process is waiting for some event to occur

 ready:  The process is waiting to be assigned to a processor

 terminated:  The process has finished execution
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Diagram of Process State
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Process Control Block (PCB)

Information associated with each process 

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of 

instruction to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities, 

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used, 

clock time elapsed since start, time 

limits

 I/O status information – I/O devices 

allocated to process, list of open files
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CPU Switch From Process to Process
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Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program 

counters in PCB

 See next chapter
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Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for 

time sharing

 Process scheduler selects among available processes for 

next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows
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Schedulers

 Short-term scheduler  (or CPU scheduler) – selects which process should 

be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds)  (must be 

fast)

 Long-term scheduler  (or job scheduler) – selects which processes should 

be brought into the ready queue

 Long-term scheduler is invoked  infrequently (seconds, minutes) 

(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts

 CPU-bound process – spends more time doing computations; few very 

long CPU bursts

 Long-term scheduler strives for good process mix
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Addition of Medium Term Scheduling

 Medium-term scheduler  can be added if degree of multiple 

programming needs to decrease

 Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping
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Context Switch

 When CPU switches to another process, the system must save 

the state of the old process and load the saved state for the 

new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful 

work while switching

 The more complex the OS and the PCB  the longer the 

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU 

 multiple contexts loaded at once
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Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination, 

 and so on as detailed next
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Process Creation

 Parent process create children processes, which, in turn 

create other processes, forming a tree of processes

 Generally, process identified and managed via a process 

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate
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A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298
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Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the 

process’ memory space with a new program
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Process Termination

 Process executes last statement and then asks the operating 
system to delete it using the exit() system call.

 Returns  status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes  using 
the abort() system call.  Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not 

allow  a child to continue if its parent terminates
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Process Termination

 Some operating systems do not allow child to exists if its parent 

has terminated.  If a process terminates, then all its children must 

also be terminated.

 cascading termination.  All children, grandchildren, etc.  are  

terminated.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by 
using the wait()system call. The call returns status information 

and the pid of the terminated process

pid = wait(&status); 

 If no parent waiting (did not invoke wait()) process is a zombie

 If parent terminated without invoking wait , process is an orphan
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Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, 

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing
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Chapter 4:  Threads
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Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by 

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is 

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded
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Multithreaded Server Architecture
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Benefits

 Responsiveness – may allow continued execution if part of 

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier 

than shared memory or message passing

 Economy – cheaper than process creation, thread switching 

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor 

architectures
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Multicore Programming

 Multicore or multiprocessor systems putting pressure on 

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task 

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency
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Multicore Programming (Cont.)

 Types of parallelism 

 Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each 

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core
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Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:
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Single and Multithreaded Processes



1.89 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an 

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on 

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?
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User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows 

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X
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Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many
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Many-to-One

 Many user-level threads mapped to 

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel 

on muticore system because only one 

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads
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One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes 

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later
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Many-to-Many Model

 Allows many user level threads to be 

mapped to many kernel threads

 Allows the  operating system to create 

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows  with the ThreadFiber
package
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Two-level Model

 Similar to M:M, except that it allows a user thread to be 

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier
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Chapter 6:  CPU Scheduling
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Basic Concepts

 Maximum CPU utilization 

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main 

concern
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CPU Scheduler

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities
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Dispatcher

 Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to 

restart that program

 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running
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Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per 

time unit

 Turnaround time – amount of time to execute a particular 

process

 Waiting time – amount of time a process has been waiting in the 

ready queue

 Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 

time-sharing environment)
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Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time 

 Min waiting time 

 Min response time
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time:  (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3
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Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest 

time

 SJF is optimal – gives minimum average waiting time for a given 

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user
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Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
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P
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Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to 

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec
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Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted 

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the 

process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec
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Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), 

usually 10-100 milliseconds.  After this time has elapsed, the 

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time in 

chunks of at most q time units at once.  No process waits more 

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, 

otherwise overhead is too high
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Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is: 

 Typically, higher average turnaround than SJF, but better 
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec
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Time Quantum and Context Switch Time
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Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 

foreground in RR

 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

 A process can move between the various queues; aging can be 

implemented this way

 Multilevel-feedback-queue scheduler defined by the following 

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter 

when that process needs service
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Example of Multilevel Feedback Queue

 Three queues: 

 Q0 – RR with time quantum 8 

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is 

served FCFS

 When it gains CPU, job receives 8 

milliseconds

 If it does not finish in 8 

milliseconds, job is moved to 

queue Q1

 At Q1 job is again served FCFS and 

receives 16 additional milliseconds

 If it still does not complete, it is 

preempted and moved to queue Q2
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Chapter 7:  Deadlocks



1.117 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi

instances.

Each process utilizes a resource as 

follows:

 request 

 use 

 release
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Deadlock Characterization

Mutual exclusion: only one 

process at a time can use a 

resource

Hold and wait: a process 

holding at least one resource is 

waiting to acquire additional 

resources held by other 

processes

No preemption: a resource can 

be released only voluntarily by the 

process holding it, after that 

Deadlock can arise if four conditions hold simultaneously.
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Resource-Allocation Graph

V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting 

of all the processes in the system

R = {R1, R2, …, Rm}, the set 

consisting of all resource types in the 

system

 request edge – directed edge Pi 

 Rj

 assignment edge – directed edge 

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of RjPi

Pi

Rj

Rj
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Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock
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Graph With A Cycle But No Deadlock
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Basic Facts

 If graph contains no cycles 

no deadlock

 If graph contains a cycle 

 if only one instance per resource 

type, then deadlock

 if several instances per resource 

type, possibility of deadlock



1.125 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

Ensure that the system will 

never enter a deadlock state:

Deadlock prevention

Deadlock avoidence

Allow the system to enter a 

deadlock state and then 

recover

 Ignore the problem and 

pretend that deadlocks never 

occur in the system; used by 

most operating systems, 
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Deadlock Prevention

Mutual Exclusion – not required 

for sharable resources (e.g., 

read-only files); must hold for 

non-sharable resources

Hold and Wait – must guarantee 

that whenever a process 

requests a resource, it does not 

hold any other resources

Require process to request and be 

allocated all its resources before it 

begins execution, or allow process 

Restrain the ways request can be made
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Deadlock Prevention (Cont.)

No Preemption –

 If a process that is holding some 

resources requests another 

resource that cannot be immediately 

allocated to it, then all resources 

currently being held are released

 Preempted resources are added to 

the list of resources for which the 

process is waiting

 Process will be restarted only when 

it can regain its old resources, as 

well as the new ones that it is 

requesting
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Deadlock Avoidance

Simplest and most useful model 

requires that each process 

declare the maximum number of 

resources of each type that it may 

need

The deadlock-avoidance 

algorithm dynamically examines 

the resource-allocation state to 

ensure that there can never be a 

circular-wait condition

Requires that the system has some additional a priori information 

available
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Safe State

When a process requests an 

available resource, system must 

decide if immediate allocation leaves 

the system in a safe state

System is in safe state if there exists 

a sequence <P1, P2, …, Pn> of ALL 

the  processes  in the systems such 

that  for each Pi, the resources that Pi 

can still request can be satisfied by 

currently available resources + 

resources held by all the Pj, with j < I

That is:
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Basic Facts

 If a system is in safe state  no 

deadlocks

 If a system is in unsafe state 

possibility of deadlock

Avoidance  ensure that a 

system will never enter an unsafe 

state.
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Safe, Unsafe, Deadlock State 
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Avoidance Algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource 

type

 Use the banker’s algorithm
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Resource-Allocation Graph Scheme

Claim edge Pi  Rj indicated that 

process Pj may request resource 

Rj; represented by a dashed line

Claim edge converts to request 

edge when a process requests a 

resource

Request edge converted to an 

assignment edge when the  

resource is allocated to the process

When a resource is released by a 

process, assignment edge 
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Resource-Allocation Graph
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Unsafe State In Resource-Allocation Graph
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Resource-Allocation Graph Algorithm

Suppose that process Pi

requests a resource Rj

The request can be granted 

only if converting the request 

edge to an assignment edge 

does not result in the 

formation of a cycle in the 

resource allocation graph
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Banker’s Algorithm

Multiple instances

Each process must a priori claim 

maximum use

When a process requests a 

resource it may have to wait  

When a process gets all its 

resources it must return them in a 

finite amount of time
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Recovery from Deadlock:  Process Termination

Abort all deadlocked processes

Abort one process at a time until the 

deadlock cycle is eliminated

 In which order should we choose to 

abort?

1. Priority of the process

2. How long process has computed, and 

how much longer to completion

3. Resources the process has used
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Recovery from Deadlock:  Resource Preemption

Selecting a victim – minimize 

cost

Rollback – return to some safe 

state, restart process for that state

Starvation – same process may 

always be picked as victim, 

include number of rollback in cost 

factor
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Chapter 8:  Main Memory
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Background

 Program must be brought (from disk)  into memory and 

placed within a process for it to be run

 Main memory and registers are only storage CPU can 

access directly

 Memory unit only sees a stream of addresses + read 

requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation
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Base and Limit Registers

 A pair of base and limit registers define the logical address space

 CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user
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Hardware Address Protection
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a 

separate physical address space is central to proper memory 

management

 Logical address – generated by the CPU; also referred to 

as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time 

and load-time address-binding schemes; logical (virtual) and 

physical addresses differ in execution-time address-binding 

scheme

 Logical address space is the set of all logical addresses 

generated by a program

 Physical address space is the set of all physical addresses 

generated by a program
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Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical 

address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the 

relocation register is added to every address generated by a 

user process at the time it is sent to memory

 Base register now called relocation register

 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the 

real physical addresses

 Execution-time binding occurs when reference is made to 

location in memory

 Logical address bound to physical addresses
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Dynamic relocation using a relocation register

 Routine is not loaded until it is 

called

 Better memory-space utilization; 

unused routine is never loaded

 All routines kept on disk in 

relocatable load format

 Useful when large amounts of 

code are needed to handle 

infrequently occurring cases

 No special support from the 

operating system is required

 Implemented through program 

design

 OS can help by providing libraries 

to implement dynamic loading
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Dynamic Linking

 Static linking – system libraries and program code combined by 

the loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate 

memory-resident library routine

 Stub replaces itself with the address of the routine, and executes 

the routine

 Operating system checks if routine is in processes’ memory 

address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed



1.148 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution

 Total physical memory space of processes can exceed 
physical memory

 Backing store – fast disk large enough to accommodate copies 
of all memory images for all users; must provide direct access to 
these memory images

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes 
which have memory images on disk
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Swapping (Cont.)

 Does the swapped out process need to swap back in to same 
physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory space

 Modified versions of swapping are found on many systems (i.e., 
UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below 

threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to 

swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of 

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 4000ms 

(4 seconds)

 Can reduce if reduce size of memory swapped – by knowing 

how much memory really being used

 System calls to inform OS of memory use via 
request_memory() and release_memory()
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Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong 

process

 Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

 Swap only when free memory extremely low
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Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with 

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of 

memory
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Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from each 

other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each 

logical address must be less than the limit register 

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being transient 

and kernel changing size
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Hardware Support for Relocation and Limit Registers
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Multiple-partition allocation

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered 

throughout memory

 When a process arrives, it is allocated memory from a hole large enough to 

accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size  

 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization
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Fragmentation

 External Fragmentation – total memory space exists to 

satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly 

larger than requested memory; this size difference is memory 

internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together 

in one large block

 Compaction is possible only if relocation is dynamic, and is 

done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation 

problems
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Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure 

function

method

object

local variables, global variables

common block

stack

symbol table

arrays
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User’s View of a Program
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space



1.163 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Architecture 

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each 

table entry has:

 base – contains the starting physical address where the 

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment 

table’s location in memory

 Segment-table length register (STLR) indicates number of 

segments used by a program;

segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing 

occurs at segment level

 Since segments vary in length, memory allocation is a 

dynamic storage-allocation problem

 A segmentation example is shown in the following diagram
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Segmentation Hardware
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Paging

 Physical  address space of a process can be noncontiguous; 

process is allocated physical memory whenever the latter is 

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and 

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n



1.168 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware
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Paging Model of Logical and  Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

 By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page 

table

 In this scheme every data/instruction access requires two 

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of 

a special fast-lookup hardware cache called associative 

memory or translation look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each 

TLB entry – uniquely identifies each process to provide 

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access 

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast 

access
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Associative Memory

 Associative memory – parallel search 

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Memory Protection

 Memory protection implemented by associating protection bit 

with each frame to indicate if read-only or read-write access is 

allowed

 Can also add more bits to indicate page execute-only, and 

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel
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Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process space

 Also useful for interprocess communication if sharing of 

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear 

anywhere in the logical address space
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Structure of the Page Table

 Memory structures for paging can get huge using straight-

forward methods

 Consider a 32-bit logical address space as on modern 

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / 

memory for page table alone

 That amount of memory used to cost a lot

 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables
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Chapter 11:  

File-System Interface
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Chapter 11:  File-System Interface

 File Concept

 Access Methods

 Disk and Directory Structure

 File-System Mounting

 File Sharing

 Protection
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File Concept

 Contiguous logical address space

 Types: 

 Data

 numeric

 character

 binary

 Program

 Contents defined by file’s creator

 Many types

 Consider text file, source file, executable file
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File Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, 

and usage monitoring

 Information about files are kept in the directory structure, which is 

maintained on the disk

 Many variations, including extended file attributes such as file 

checksum

 Information kept in the directory structure
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File Operations

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, 

and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to 

directory structure on disk
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Open Files

 Several pieces of data are needed to manage open files:

 Open-file table: tracks open files

 File pointer:  pointer to last read/write location, per 

process that has the file open

 File-open count: counter of number of times a file is 

open – to allow removal of data from open-file table when 

last processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information
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File Types – Name, Extension
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File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines 

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting 
appropriate control characters

 Who decides:

 Operating system

 Program
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Sequential-access File



1.189 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

 Sequential Access
read next

write next 

reset

no read after last write

(rewrite)

 Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next 

rewrite n

n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12
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Simulation of Sequential Access on Direct-access File
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Other Access Methods

 Can be built on top of base methods

 General involve creation of an index for the file

 Keep index in memory for fast determination of location of 
data to be operated on (consider UPC code plus record of 
data about that item)

 If too large, index (in memory) of the index (on disk)

 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary 
index

 File kept sorted on a defined key

 All done by the OS

 VMS operating system provides index and relative files as 
another example (see next slide)
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Example of Index and Relative Files
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Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
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Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system, or 

formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file 

system’s info in device directory or volume table of contents

 As well as general-purpose file systems there are many 

special-purpose file systems, frequently all within the same 

operating system or computer
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A Typical File-system Organization
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Types of File Systems

 We mostly talk of general-purpose file systems

 But systems frequently have may file systems, some general- and 

some special- purpose

 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O

 objfs – interface into kernel memory to get kernel symbols for 

debugging

 ctfs – contract file system for managing daemons 

 lofs – loopback file system allows one FS to be accessed in 

place of another

 procfs – kernel interface to process structures

 ufs, zfs – general purpose file systems
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Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system
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Directory Organization

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all 

Java programs, all games, …)

The directory is organized logically  to obtain 
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Single-Level Directory

 A single directory for all users

 Naming problem

 Grouping problem
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Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability
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Tree-Structured Directories
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Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list
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Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example:  if in current directory   /mail

mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”
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Acyclic-Graph Directories

 Have shared subdirectories and files
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Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer

Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file
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General Graph Directory
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General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection 

algorithm to determine whether it is OK
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File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a 

mount point
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Mount Point
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File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing 

method

 If multi-user system

 User IDs identify users, allowing permissions and 

protections to be per-user

Group IDs allow users to be in groups, permitting group 

access rights

 Owner of a file / directory

 Group of a file / directory
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Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List
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Access Lists and Groups

 Mode of access:  read, write, execute

 Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0

RWX

c) public access 1  0 0 1

 Ask manager to create a group (unique name), say G, and add 
some users to the group.

 For a particular file (say game) or subdirectory, define an 
appropriate access.

Attach a group to a file
chgrp     G    game
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Windows 7 Access-Control List Management
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Chapter 12:  File System 

Implementation
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Chapter 12: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System
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File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing 

data to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512 

bytes)

 File control block – storage structure consisting of information 

about a file

 Device driver controls the physical device 

 File system organized into layers



1.217 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered File System



1.218 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector 

10, into memory location 1060” outputs low-level hardware 

specific commands to hardware controller

 Basic file system given command like “retrieve block 123”
translates to device driver

 Also manages memory buffers and caches (allocation, freeing, 

replacement) 

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and 

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation
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File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by 

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but 

adds overhead and can decrease performanceTranslates file 

name into file number, file handle, location by maintaining file 

control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method 

according to OS designer
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File System Layers (Cont.)

 Many file systems, sometimes many within an operating 

system

 Each with its own format (CD-ROM is ISO 9660; Unix has 

UFS, FFS;  Windows has FAT, FAT32, NTFS as well as 

floppy, CD, DVD Blu-ray, Linux has more than 40 types, 

with extended file system ext2 and ext3 leading; plus 

distributed file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM, 

FUSE
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File-System Implementation

 We have system calls at the API level, but how do we implement 

their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS 

from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains 

volume details

 Total # of blocks, # of free blocks, block size, free block 

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table
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File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about 

the file

 inode number, permissions, size, dates

 NFTS stores into in master file table  using relational DB 

structures
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In-Memory File System Structures

 Mount table storing file system mounts, mount points, file 

system types

 The following figure illustrates the necessary file system 

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process 

memory address
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In-Memory File System Structures
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Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or 

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that 

contain enough code to know how to load the kernel from the file 

system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other 

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access



1.226 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use 

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the 

same location

 Only good if entries are fixed size, or use chained-overflow 

method
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Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for 

files:

 Contiguous allocation – each file occupies set of contiguous 

blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number 

of blocks) are required

 Problems include finding space for file, knowing file size, 

external fragmentation, need for compaction off-line

(downtime) or on-line
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Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q + 

starting address

Displacement into block = R
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Extent-Based Systems

 Many newer file systems (i.e., Veritas File System) use a 

modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents
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Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block 

needed

 Improve efficiency by clustering blocks into groups but 

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks
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Allocation Methods – Linked (Cont.)

 FAT (File Allocation Table) variation

 Beginning of volume has table, indexed by block number

 Much like a linked list, but faster on disk and cacheable 

 New block allocation simple
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Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered 

anywhere on the disk

pointerblock      =

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks 

representing the file.

Displacement into block = R + 1

LA/511

Q

R
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Linked Allocation
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File-Allocation Table
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Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table
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Example of Indexed Allocation
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Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead 
of index block

 Mapping from logical to physical in a file of maximum size of 256K 
bytes and block size of 512 bytes.  We need only 1 block for index 
table

LA/512

Q

R

Q = displacement into index table

R = displacement into block
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Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length (block 
size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:
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Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer 

index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:
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Indexed Allocation – Mapping (Cont.)
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Performance

 Best method depends on file access type

 Contiguous great for sequential and random

 Linked good for sequential, not random

 Declare access type at creation -> select either contiguous or 

linked

 Indexed more complex

 Single block access could require 2 index block reads then 

data block read

 Clustering can help improve throughput, reduce CPU 

overhead
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Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O is 

reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one 

disk I/O 

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during 

one disk I/O
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Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit



1.244 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 4KB =  212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files
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Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous 
space easily

 No waste of space

 No need to traverse the 
entire list (if # free blocks 
recorded)
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Free-Space Management (Cont.)

 Grouping 

 Modify linked list to store address of next n-1 free blocks in first 
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting

 Because space is frequently contiguously used and freed,  with 
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free 
blocks

 Free space list then has entries containing addresses and 
counts
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Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory -> 
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree 
structure, indexed  by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry



Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 13:  I/O Systems
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Overview

 I/O management is a major component of operating system 

design and operation

 Important aspect of computer operation

 I/O devices vary greatly

 Various methods to control them

 Performance management 

 New types of devices frequent

 Ports, busses, device controllers connect to various devices

 Device drivers encapsulate device details

 Present uniform device-access interface to I/O subsystem
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I/O Hardware

 Incredible variety of I/O devices

 Storage

 Transmission

 Human-interface

 Common concepts – signals from I/O devices interface with computer

 Port – connection point for device

 Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe) 

 expansion bus connects relatively slow devices

 Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode, 

memory, etc
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A Typical PC Bus Structure
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I/O Hardware (Cont.)

 I/O instructions control devices

 Devices usually have registers where device driver places 

commands, addresses, and data to write, or read data from 

registers after command execution

 Data-in register, data-out register, status register, control 

register

 Typically 1-4 bytes, or FIFO buffer

 Devices have addresses, used by 

 Direct I/O instructions

 Memory-mapped I/O

 Device data and command registers mapped to 

processor address space

 Especially for large address spaces (graphics)
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Device I/O Port Locations on PCs (partial)



1.254 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Polling

 For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out 

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when 

transfer done

 Step 1 is busy-wait cycle to wait for I/O from device

 Reasonable if device is fast

 But inefficient if device slow

 CPU switches to other tasks?

 But if miss a cycle data overwritten / lost
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Interrupts

 Polling can happen in 3 instruction cycles

 Read status, logical-and to extract status bit, branch if not zero

 How to be more efficient if non-zero infrequently?

 CPU Interrupt-request line triggered by I/O device

 Checked by processor after each instruction

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Context switch at start and end

 Based on priority

 Some nonmaskable

 Interrupt chaining if more than one device at same interrupt 

number
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Interrupt-Driven I/O Cycle
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Interrupts (Cont.)

 Interrupt mechanism also used for exceptions

 Terminate process, crash system due to hardware error

 Page fault executes when memory access error

 System call executes via trap to trigger kernel to execute 

request

 Multi-CPU systems can process interrupts concurrently

 If operating system designed to handle it

 Used for time-sensitive processing, frequent, must be fast
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Direct Memory Access

 Used to avoid programmed I/O (one byte at a time) for large data 

movement 

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and 

memory 

 OS writes DMA command block into memory 

 Source and destination addresses

 Read or write mode

 Count of bytes

 Writes location of command block to DMA controller

 Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

 When done, interrupts to signal completion

 Version that is aware of virtual addresses can be even more efficient -

DVMA
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Six Step Process to Perform DMA Transfer
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Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 New devices talking already-implemented protocols need no extra 

work

 Each OS has its own I/O subsystem structures and device driver 

frameworks

 Devices vary in many dimensions

 Character-stream or block

 Sequential or random-access

 Synchronous or asynchronous (or both)

 Sharable or dedicated

 Speed of operation

 read-write, read only, or write only
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A Kernel I/O Structure
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Characteristics of I/O Devices
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Characteristics of I/O Devices (Cont.)

 Subtleties of devices handled by device drivers

 Broadly I/O devices can be grouped by the OS into

 Block I/O

 Character I/O (Stream)

 Memory-mapped file access

 Network sockets

 For direct manipulation of I/O device specific characteristics, 

usually an escape / back door

 Unix ioctl() call to send arbitrary bits to a device control 

register and data to device data register
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Block and Character Devices

 Block devices include disk drives

 Commands include read, write, seek 

 Raw I/O, direct I/O, or file-system access

 Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via 

demand paging

 DMA

 Character devices include keyboards, mice, serial ports

 Commands include get(), put()

 Libraries layered on top allow line editing
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Network Devices

 Varying enough from block and character to have own 

interface

 Linux, Unix, Windows and many others include socket 

interface

 Separates network protocol from network operation

 Includes select() functionality

 Approaches vary widely (pipes, FIFOs, streams, queues, 

mailboxes)
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Clocks and Timers

 Provide current time, elapsed time, timer

 Normal resolution about 1/60 second

 Some systems provide higher-resolution timers

 Programmable interval timer used for timings, periodic 

interrupts

 ioctl() (on UNIX) covers odd aspects of I/O such as 

clocks and timers
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Nonblocking and Asynchronous I/O

 Blocking - process suspended until I/O completed

 Easy to use and understand

 Insufficient for some needs

 Nonblocking - I/O call returns as much as available

 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

 select() to find if data ready then read() or write()

to transfer

 Asynchronous - process runs while I/O executes

 Difficult to use

 I/O subsystem signals process when I/O completed
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Two I/O Methods

Synchronous Asynchronous
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Vectored I/O

 Vectored I/O allows one system call to perform multiple I/O 

operations

 For example, Unix readve() accepts a vector of multiple 

buffers to read into or write from

 This scatter-gather method better than multiple individual I/O 

calls

 Decreases context switching and system call overhead

 Some versions provide atomicity

 Avoid for example worry about multiple threads 

changing data as reads / writes occurring 
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Kernel I/O Subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Some implement Quality Of Service (i.e. IPQOS)

 Buffering - store data in memory while transferring between devices

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

 Double buffering – two copies of the data

 Kernel and user

 Varying sizes

 Full  / being processed and not-full / being used

 Copy-on-write can be used for efficiency in some cases
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Device-status Table
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Kernel I/O Subsystem

 Caching - faster device holding copy of data

 Always just a copy

 Key to performance

 Sometimes combined with buffering

 Spooling - hold output for a device

 If device can serve only one request at a time 

 i.e., Printing

 Device reservation - provides exclusive access to a device

 System calls for allocation and de-allocation

 Watch out for deadlock
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Error Handling

 OS can recover from disk read, device unavailable, transient 

write failures

 Retry a read or write, for example

 Some systems more advanced – Solaris FMA, AIX 

 Track error frequencies, stop using device with 

increasing frequency of retry-able errors

 Most return an error number or code when I/O request fails 

 System error logs hold problem reports
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I/O Protection

 User process may accidentally or purposefully attempt to 

disrupt normal operation via illegal I/O instructions

 All I/O instructions defined to be privileged

 I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must 

be protected too
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Use of a System Call to Perform I/O
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I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

 Determine device holding file 

 Translate name to device representation

 Physically read data from disk into buffer

 Make data available to requesting process

 Return control to process
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Life Cycle of An I/O Request


