
Chapter 1: Introduction

What is an Operating System?

 A program that acts as an intermediary between a user of a

computer and the computer hardware

 Operating system goals:

 Execute user programs and make solving user problems

easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Computer System Structure

 Computer system can be divided into four components:

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various

applications and users

 Application programs – define the ways in which the system

resources are used to solve the computing problems of the

users

 Word processors, compilers, web browsers, database

systems, video games

 Users

 People, machines, other computers

Four Components of a Computer System

What Operating Systems Do

 Depends on the point of view

 Users want convenience, ease of use and good performance

 Don’t care about resource utilization

 But shared computer such as mainframe or minicomputer must

keep all users happy

 Users of dedicate systems such as workstations have dedicated

resources but frequently use shared resources from servers

 Handheld computers are resource poor, optimized for usability

and battery life

 Some computers have little or no user interface, such as

embedded computers in devices and automobiles

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and

fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and

improper use of the computer

Operating System Definition (Cont.)

 No universally accepted definition

 “Everything a vendor ships when you order an operating

system” is a good approximation

 But varies wildly

 “The one program running at all times on the computer” is

the kernel.

 Everything else is either

 a system program (ships with the operating system) , or

 an application program.

Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known

as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common

bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for

memory cycles

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its

operation by causing an interrupt

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains the

addresses of all the service routines

 Interrupt architecture must save the address of the

interrupted instruction

 A trap or exception is a software-generated interrupt

caused either by an error or a user request

 An operating system is interrupt driven

Interrupt Handling

 The operating system preserves the state of the CPU by

storing registers and the program counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should

be taken for each type of interrupt

Interrupt Timeline

I/O Structure

 After I/O starts, control returns to user program only upon I/O
completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no
simultaneous I/O processing

 After I/O starts, control returns to user program without waiting
for I/O completion

 System call – request to the OS to allow user to wait for
I/O completion

 Device-status table contains entry for each I/O device
indicating its type, address, and state

 OS indexes into I/O device table to determine device
status and to modify table entry to include interrupt

Storage Definitions and Notation Review

The basic unit of computer storage is the bit. A bit can contain one of two
values, 0 and 1. All other storage in a computer is based on collections of bits.
Given enough bits, it is amazing how many things a computer can represent:
numbers, letters, images, movies, sounds, documents, and programs, to name
a few. A byte is 8 bits, and on most computers it is the smallest convenient
chunk of storage. For example, most computers don’t have an instruction to
move a bit but do have one to move a byte. A less common term is word,
which is a given computer architecture’s native unit of data. A word is made up
of one or more bytes. For example, a computer that has 64-bit registers and 64-
bit memory addressing typically has 64-bit (8-byte) words. A computer executes
many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured
and manipulated in bytes and collections of bytes.
A kilobyte, or KB, is 1,024 bytes
a megabyte, or MB, is 1,0242 bytes
a gigabyte, or GB, is 1,0243 bytes
a terabyte, or TB, is 1,0244 bytes
a petabyte, or PB, is 1,0245 bytes

Computer manufacturers often round off these numbers and say that a
megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking
measurements are an exception to this general rule; they are given in bits
(because networks move data a bit at a time).

Storage Structure

 Main memory – only large storage media that the CPU can access

directly

 Random access

 Typically volatile

 Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

 Hard disks – rigid metal or glass platters covered with magnetic

recording material

 Disk surface is logically divided into tracks, which are subdivided into

sectors

 The disk controller determines the logical interaction between the device

and the computer

 Solid-state disks – faster than hard disks, nonvolatile

 Various technologies

 Becoming more popular

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage system;

main memory can be viewed as a cache for secondary

storage

 Device Driver for each device controller to manage I/O

 Provides uniform interface between controller and

kernel

Storage-Device Hierarchy

Caching

 Important principle, performed at many levels in a computer

(in hardware, operating system, software)

 Information in use copied from slower to faster storage

temporarily

 Faster storage (cache) checked first to determine if

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit

information at close to memory speeds

 Device controller transfers blocks of data from buffer

storage directly to main memory without CPU

intervention

 Only one interrupt is generated per block, rather than

the one interrupt per byte

How a Modern Computer Works

A von Neumann architecture

Computer-System Architecture

 Most systems use a single general-purpose processor

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types:

1. Asymmetric Multiprocessing – each processor is assigned a

specie task.

2. Symmetric Multiprocessing – each processor performs all tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

 Multi-chip and multicore

 Systems containing all chips

 Chassis containing multiple separate systems

Clustered Systems

 Like multiprocessor systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications,

monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid conflicting

operations

Clustered Systems

Operating System Structure

 Multiprogramming (Batch system) needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating

interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time  CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Operating-System Operations

 Interrupt driven (hardware and software)

 Hardware interrupt by one of the devices

 Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service

 Other process problems include infinite loop, processes
modifying each other or the operating system

Operating-System Operations (cont.)

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user
code or kernel code

 Some instructions designated as privileged, only
executable in kernel mode

 System call changes mode to kernel, return from call resets
it to user

 Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Timer is set to interrupt the computer after some time period

 Keep a counter that is decremented by the physical clock.

 Operating system set the counter (privileged instruction)

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate

program that exceeds allotted time

Process Management

 A process is a program in execution. It is a unit of work within the
system. Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying
location of next instruction to execute

 Process executes instructions sequentially, one at a time,
until completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some
operating system running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the processes
/ threads

Process Management Activities

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in

connection with process management:

Memory Management

 To execute a program all (or part) of the instructions must be in

memory

 All (or part) of the data that is needed by the program must be in

memory.

 Memory management determines what is in memory and when

 Optimizing CPU utilization and computer response to users

 Memory management activities

 Keeping track of which parts of memory are currently being

used and by whom

 Deciding which processes (or parts thereof) and data to

move into and out of memory

 Allocating and deallocating memory space as needed

Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or

data that must be kept for a “long” period of time

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem and its

algorithms

 OS activities

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed – by OS or applications

 Varies between WORM (write-once, read-many-times) and RW

(read-write)

I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware devices

from the user

 I/O subsystem responsible for

 Memory management of I/O including buffering (storing data

temporarily while it is being transferred), caching (storing parts

of data in faster storage for performance), spooling (the

overlapping of output of one job with input of other jobs)

 General device-driver interface

 Drivers for specific hardware devices

Protection and Security

 Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

 Security – defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity
theft, theft of service

 Systems generally first distinguish among users, to determine who
can do what

 User identities (user IDs, security IDs) include name and
associated number, one per user

 User ID then associated with all files, processes of that user to
determine access control

 Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

 Privilege escalation allows user to change to effective ID with
more rights

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 2: Operating-System

Structures

1.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

 Operating systems provide an environment for execution of programs

and services to programs and users

 One set of operating-system services provides functions that are

helpful to the user:

 User interface - Almost all operating systems have a user

interface (UI).

 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch

 Program execution - The system must be able to load a

program into memory and to run that program, end execution,

either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may

involve a file or an I/O device

1.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to

the user (Cont.):

 File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete

them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same

computer or between computers over a network

 Communications may be via shared memory or through message

passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user

program

 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

1.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

 Accounting - To keep track of which users use how much and what
kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

 Protection involves ensuring that all access to system resources is
controlled

 Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

1.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

1.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems

program

 Sometimes multiple flavors implemented – shells

 Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of

programs

 If the latter, adding new features doesn’t require shell

modification

1.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute function,

open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available

 Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

1.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

 Touchscreen devices require new

interfaces

 Mouse not possible or not desired

 Actions and selection based on

gestures

 Virtual keyboard for text entry

 Voice commands.

1.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

1.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

1.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to

these numbers

 The system call interface invokes the intended system call in OS

kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is

implemented

 Just needs to obey API and understand what OS will do as a

result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built

into libraries included with compiler)

1.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

 Process control

 create process, terminate process

 end, abort

 load, execute

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

 Dump memory if error

 Debugger for determining bugs, single step execution

 Locks for managing access to shared data between processes

1.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

 Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

1.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

 System programs provide a convenient environment for program

development and execution. They can be divided into:

 File manipulation

 Status information sometimes stored in a File modification

 Programming language support

 Program loading and execution

 Communications

 Background services

 Application programs

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

1.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

 Provide a convenient environment for program development and
execution

 Some of them are simply user interfaces to system calls; others
are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available
memory, disk space, number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output to the
terminal or other output devices

 Some systems implement a registry - used to store and
retrieve configuration information

1.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform
transformations of the text

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

1.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

 Background Services

 Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling, error
logging, printing

 Run in user context not kernel context

 Known as services, subsystems, daemons

 Application programs

 Don’t pertain to system

 Run by users

 Not typically considered part of OS

 Launched by command line, mouse click, finger poke

1.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some

approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,

and efficient

1.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide

what will be done

 The separation of policy from mechanism is a very important

principle, it allows maximum flexibility if policy decisions are to

be changed later (example – timer)

 Specifying and designing an OS is highly creative task of

software engineering

1.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts

 More high-level language easier to port to other hardware

 But slower

 Emulation can allow an OS to run on non-native hardware

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 3: Processes

1.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor

registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

1.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),

process is active

 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI mouse clicks, command

line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program

1.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

1.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

1.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

1.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of

instruction to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities,

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used,

clock time elapsed since start, time

limits

 I/O status information – I/O devices

allocated to process, list of open files

1.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

1.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program

counters in PCB

 See next chapter

1.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for

time sharing

 Process scheduler selects among available processes for

next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

1.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

1.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

1.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)

 Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

 Long-term scheduler is invoked infrequently (seconds, minutes) 

(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

 CPU-bound process – spends more time doing computations; few very

long CPU bursts

 Long-term scheduler strives for good process mix

1.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple

programming needs to decrease

 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

1.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save

the state of the old process and load the saved state for the

new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful

work while switching

 The more complex the OS and the PCB  the longer the

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU

 multiple contexts loaded at once

1.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination,

 and so on as detailed next

1.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn

create other processes, forming a tree of processes

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

1.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

1.77 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the

process’ memory space with a new program

1.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.

 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

1.79 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some operating systems do not allow child to exists if its parent

has terminated. If a process terminates, then all its children must

also be terminated.

 cascading termination. All children, grandchildren, etc. are

terminated.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information

and the pid of the terminated process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie

 If parent terminated without invoking wait , process is an orphan

1.80 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 4: Threads

1.82 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

1.83 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture

1.84 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor

architectures

1.85 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

1.86 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

1.87 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

1.88 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes

1.89 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

1.90 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

1.91 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

1.92 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel

on muticore system because only one

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

1.93 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later

1.94 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user level threads to be

mapped to many kernel threads

 Allows the operating system to create

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows with the ThreadFiber
package

1.95 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 6: CPU Scheduling

1.97 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 Maximum CPU utilization

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

1.98 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

1.99 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to

restart that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

1.100 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per

time unit

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting in the

ready queue

 Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for

time-sharing environment)

1.101 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

1.102 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

1.103 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

1.104 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest

time

 SJF is optimal – gives minimum average waiting time for a given

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

1.105 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

1.106 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

1.107 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

1.108 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1.109 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch,

otherwise overhead is too high

1.110 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

1.111 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

1.112 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

1.113 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

1.114 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

1.115 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 7: Deadlocks

1.117 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi

instances.

Each process utilizes a resource as

follows:

 request

 use

 release

1.118 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Characterization

Mutual exclusion: only one

process at a time can use a

resource

Hold and wait: a process

holding at least one resource is

waiting to acquire additional

resources held by other

processes

No preemption: a resource can

be released only voluntarily by the

process holding it, after that

Deadlock can arise if four conditions hold simultaneously.

1.119 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting

of all the processes in the system

R = {R1, R2, …, Rm}, the set

consisting of all resource types in the

system

 request edge – directed edge Pi

 Rj

 assignment edge – directed edge

A set of vertices V and a set of edges E.

1.120 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of RjPi

Pi

Rj

Rj

1.121 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of a Resource Allocation Graph

1.122 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocation Graph With A Deadlock

1.123 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph With A Cycle But No Deadlock

1.124 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

 If graph contains no cycles 

no deadlock

 If graph contains a cycle 

 if only one instance per resource

type, then deadlock

 if several instances per resource

type, possibility of deadlock

1.125 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

Ensure that the system will

never enter a deadlock state:

Deadlock prevention

Deadlock avoidence

Allow the system to enter a

deadlock state and then

recover

 Ignore the problem and

pretend that deadlocks never

occur in the system; used by

most operating systems,

1.126 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention

Mutual Exclusion – not required

for sharable resources (e.g.,

read-only files); must hold for

non-sharable resources

Hold and Wait – must guarantee

that whenever a process

requests a resource, it does not

hold any other resources

Require process to request and be

allocated all its resources before it

begins execution, or allow process

Restrain the ways request can be made

1.127 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention (Cont.)

No Preemption –

 If a process that is holding some

resources requests another

resource that cannot be immediately

allocated to it, then all resources

currently being held are released

 Preempted resources are added to

the list of resources for which the

process is waiting

 Process will be restarted only when

it can regain its old resources, as

well as the new ones that it is

requesting

1.128 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Avoidance

Simplest and most useful model

requires that each process

declare the maximum number of

resources of each type that it may

need

The deadlock-avoidance

algorithm dynamically examines

the resource-allocation state to

ensure that there can never be a

circular-wait condition

Requires that the system has some additional a priori information

available

1.129 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe State

When a process requests an

available resource, system must

decide if immediate allocation leaves

the system in a safe state

System is in safe state if there exists

a sequence <P1, P2, …, Pn> of ALL

the processes in the systems such

that for each Pi, the resources that Pi

can still request can be satisfied by

currently available resources +

resources held by all the Pj, with j < I

That is:

1.130 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

 If a system is in safe state  no

deadlocks

 If a system is in unsafe state 

possibility of deadlock

Avoidance  ensure that a

system will never enter an unsafe

state.

1.131 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe, Unsafe, Deadlock State

1.132 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Avoidance Algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource

type

 Use the banker’s algorithm

1.133 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Scheme

Claim edge Pi  Rj indicated that

process Pj may request resource

Rj; represented by a dashed line

Claim edge converts to request

edge when a process requests a

resource

Request edge converted to an

assignment edge when the

resource is allocated to the process

When a resource is released by a

process, assignment edge

1.134 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

1.135 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Unsafe State In Resource-Allocation Graph

1.136 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

Suppose that process Pi

requests a resource Rj

The request can be granted

only if converting the request

edge to an assignment edge

does not result in the

formation of a cycle in the

resource allocation graph

1.137 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

Multiple instances

Each process must a priori claim

maximum use

When a process requests a

resource it may have to wait

When a process gets all its

resources it must return them in a

finite amount of time

1.138 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Process Termination

Abort all deadlocked processes

Abort one process at a time until the

deadlock cycle is eliminated

 In which order should we choose to

abort?

1. Priority of the process

2. How long process has computed, and

how much longer to completion

3. Resources the process has used

1.139 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize

cost

Rollback – return to some safe

state, restart process for that state

Starvation – same process may

always be picked as victim,

include number of rollback in cost

factor

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 8: Main Memory

1.141 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Program must be brought (from disk) into memory and

placed within a process for it to be run

 Main memory and registers are only storage CPU can

access directly

 Memory unit only sees a stream of addresses + read

requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

1.142 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

 CPU must check every memory access generated in user mode to

be sure it is between base and limit for that user

1.143 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Address Protection

1.144 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a

separate physical address space is central to proper memory

management

 Logical address – generated by the CPU; also referred to

as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time

and load-time address-binding schemes; logical (virtual) and

physical addresses differ in execution-time address-binding

scheme

 Logical address space is the set of all logical addresses

generated by a program

 Physical address space is the set of all physical addresses

generated by a program

1.145 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical

address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the

relocation register is added to every address generated by a

user process at the time it is sent to memory

 Base register now called relocation register

 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the

real physical addresses

 Execution-time binding occurs when reference is made to

location in memory

 Logical address bound to physical addresses

1.146 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic relocation using a relocation register

 Routine is not loaded until it is

called

 Better memory-space utilization;

unused routine is never loaded

 All routines kept on disk in

relocatable load format

 Useful when large amounts of

code are needed to handle

infrequently occurring cases

 No special support from the

operating system is required

 Implemented through program

design

 OS can help by providing libraries

to implement dynamic loading

1.147 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Linking

 Static linking – system libraries and program code combined by

the loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate

memory-resident library routine

 Stub replaces itself with the address of the routine, and executes

the routine

 Operating system checks if routine is in processes’ memory

address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed

1.148 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution

 Total physical memory space of processes can exceed
physical memory

 Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

1.149 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping (Cont.)

 Does the swapped out process need to swap back in to same
physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory space

 Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below

threshold

1.150 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic View of Swapping

1.151 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to

swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 4000ms

(4 seconds)

 Can reduce if reduce size of memory swapped – by knowing

how much memory really being used

 System calls to inform OS of memory use via
request_memory() and release_memory()

1.152 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong

process

 Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

 Swap only when free memory extremely low

1.153 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of

memory

1.154 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from each

other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each

logical address must be less than the limit register

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being transient

and kernel changing size

1.155 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Support for Relocation and Limit Registers

1.156 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-partition allocation

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered

throughout memory

 When a process arrives, it is allocated memory from a hole large enough to

accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

1.157 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage

utilization

1.158 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation

 External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is memory

internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule

1.159 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together

in one large block

 Compaction is possible only if relocation is dynamic, and is

done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation

problems

1.160 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

1.161 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User’s View of a Program

1.162 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

1.163 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each

table entry has:

 base – contains the starting physical address where the

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment

table’s location in memory

 Segment-table length register (STLR) indicates number of

segments used by a program;

segment number s is legal if s < STLR

1.164 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

1.165 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Hardware

1.166 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging

 Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation

1.167 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

1.168 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware

1.169 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Model of Logical and Physical Memory

1.170 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

1.171 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging (Cont.)

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

 By implementation process can only access its own memory

1.172 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free Frames

Before allocation After allocation

1.173 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page

table

 In this scheme every data/instruction access requires two

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of

a special fast-lookup hardware cache called associative

memory or translation look-aside buffers (TLBs)

1.174 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each

TLB entry – uniquely identifies each process to provide

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast

access

1.175 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

1.176 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware With TLB

1.177 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Protection

 Memory protection implemented by associating protection bit

with each frame to indicate if read-only or read-write access is

allowed

 Can also add more bits to indicate page execute-only, and

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel

1.178 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process space

 Also useful for interprocess communication if sharing of

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear

anywhere in the logical address space

1.179 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Structure of the Page Table

 Memory structures for paging can get huge using straight-

forward methods

 Consider a 32-bit logical address space as on modern

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone

 That amount of memory used to cost a lot

 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 11:

File-System Interface

1.181 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 11: File-System Interface

 File Concept

 Access Methods

 Disk and Directory Structure

 File-System Mounting

 File Sharing

 Protection

1.182 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

 Contents defined by file’s creator

 Many types

 Consider text file, source file, executable file

1.183 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security,

and usage monitoring

 Information about files are kept in the directory structure, which is

maintained on the disk

 Many variations, including extended file attributes such as file

checksum

 Information kept in the directory structure

1.184 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Operations

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi,

and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

1.185 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open Files

 Several pieces of data are needed to manage open files:

 Open-file table: tracks open files

 File pointer: pointer to last read/write location, per

process that has the file open

 File-open count: counter of number of times a file is

open – to allow removal of data from open-file table when

last processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

1.186 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Types – Name, Extension

1.187 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting
appropriate control characters

 Who decides:

 Operating system

 Program

1.188 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sequential-access File

1.189 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

 Sequential Access
read next

write next

reset

no read after last write

(rewrite)

 Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next

rewrite n

n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12

1.190 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulation of Sequential Access on Direct-access File

1.191 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Access Methods

 Can be built on top of base methods

 General involve creation of an index for the file

 Keep index in memory for fast determination of location of
data to be operated on (consider UPC code plus record of
data about that item)

 If too large, index (in memory) of the index (on disk)

 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary
index

 File kept sorted on a defined key

 All done by the OS

 VMS operating system provides index and relative files as
another example (see next slide)

1.192 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Index and Relative Files

1.193 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

1.194 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system, or

formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file

system’s info in device directory or volume table of contents

 As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same

operating system or computer

1.195 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Typical File-system Organization

1.196 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of File Systems

 We mostly talk of general-purpose file systems

 But systems frequently have may file systems, some general- and

some special- purpose

 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O

 objfs – interface into kernel memory to get kernel symbols for

debugging

 ctfs – contract file system for managing daemons

 lofs – loopback file system allows one FS to be accessed in

place of another

 procfs – kernel interface to process structures

 ufs, zfs – general purpose file systems

1.197 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

1.198 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Organization

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all

Java programs, all games, …)

The directory is organized logically to obtain

1.199 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single-Level Directory

 A single directory for all users

 Naming problem

 Grouping problem

1.200 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

1.201 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories

1.202 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

1.203 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”

1.204 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories

 Have shared subdirectories and files

1.205 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer

Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

1.206 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory

1.207 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

1.208 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a

mount point

1.209 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mount Point

1.210 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing

method

 If multi-user system

 User IDs identify users, allowing permissions and

protections to be per-user

Group IDs allow users to be in groups, permitting group

access rights

 Owner of a file / directory

 Group of a file / directory

1.211 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List

1.212 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Lists and Groups

 Mode of access: read, write, execute

 Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0

RWX

c) public access 1  0 0 1

 Ask manager to create a group (unique name), say G, and add
some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

Attach a group to a file
chgrp G game

1.213 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows 7 Access-Control List Management

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 12: File System

Implementation

1.215 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 12: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System

1.216 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing

data to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512

bytes)

 File control block – storage structure consisting of information

about a file

 Device driver controls the physical device

 File system organized into layers

1.217 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered File System

1.218 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector

10, into memory location 1060” outputs low-level hardware

specific commands to hardware controller

 Basic file system given command like “retrieve block 123”
translates to device driver

 Also manages memory buffers and caches (allocation, freeing,

replacement)

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation

1.219 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but

adds overhead and can decrease performanceTranslates file

name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method

according to OS designer

1.220 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Layers (Cont.)

 Many file systems, sometimes many within an operating

system

 Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as

floppy, CD, DVD Blu-ray, Linux has more than 40 types,

with extended file system ext2 and ext3 leading; plus

distributed file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM,

FUSE

1.221 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File-System Implementation

 We have system calls at the API level, but how do we implement

their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS

from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains

volume details

 Total # of blocks, # of free blocks, block size, free block

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table

1.222 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about

the file

 inode number, permissions, size, dates

 NFTS stores into in master file table using relational DB

structures

1.223 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file

system types

 The following figure illustrates the necessary file system

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process

memory address

1.224 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

In-Memory File System Structures

1.225 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file

system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

1.226 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the

same location

 Only good if entries are fixed size, or use chained-overflow

method

1.227 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for

files:

 Contiguous allocation – each file occupies set of contiguous

blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number

of blocks) are required

 Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line

(downtime) or on-line

1.228 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

1.229 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Extent-Based Systems

 Many newer file systems (i.e., Veritas File System) use a

modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents

1.230 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block

needed

 Improve efficiency by clustering blocks into groups but

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks

1.231 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation Methods – Linked (Cont.)

 FAT (File Allocation Table) variation

 Beginning of volume has table, indexed by block number

 Much like a linked list, but faster on disk and cacheable

 New block allocation simple

1.232 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk

pointerblock =

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks

representing the file.

Displacement into block = R + 1

LA/511

Q

R

1.233 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linked Allocation

1.234 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File-Allocation Table

1.235 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

1.236 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Indexed Allocation

1.237 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead
of index block

 Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index
table

LA/512

Q

R

Q = displacement into index table

R = displacement into block

1.238 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length (block
size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

1.239 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer

index -> 1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

1.240 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

1.241 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance

 Best method depends on file access type

 Contiguous great for sequential and random

 Linked good for sequential, not random

 Declare access type at creation -> select either contiguous or

linked

 Indexed more complex

 Single block access could require 2 index block reads then

data block read

 Clustering can help improve throughput, reduce CPU

overhead

1.242 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O is

reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one

disk I/O

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O

1.243 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

1.244 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files

1.245 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous
space easily

 No waste of space

 No need to traverse the
entire list (if # free blocks
recorded)

1.246 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Grouping

 Modify linked list to store address of next n-1 free blocks in first
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting

 Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free
blocks

 Free space list then has entries containing addresses and
counts

1.247 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edit9on

Chapter 13: I/O Systems

1.249 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Overview

 I/O management is a major component of operating system

design and operation

 Important aspect of computer operation

 I/O devices vary greatly

 Various methods to control them

 Performance management

 New types of devices frequent

 Ports, busses, device controllers connect to various devices

 Device drivers encapsulate device details

 Present uniform device-access interface to I/O subsystem

1.250 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Hardware

 Incredible variety of I/O devices

 Storage

 Transmission

 Human-interface

 Common concepts – signals from I/O devices interface with computer

 Port – connection point for device

 Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe)

 expansion bus connects relatively slow devices

 Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode,

memory, etc

1.251 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Typical PC Bus Structure

1.252 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Hardware (Cont.)

 I/O instructions control devices

 Devices usually have registers where device driver places

commands, addresses, and data to write, or read data from

registers after command execution

 Data-in register, data-out register, status register, control

register

 Typically 1-4 bytes, or FIFO buffer

 Devices have addresses, used by

 Direct I/O instructions

 Memory-mapped I/O

 Device data and command registers mapped to

processor address space

 Especially for large address spaces (graphics)

1.253 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Device I/O Port Locations on PCs (partial)

1.254 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Polling

 For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

 Step 1 is busy-wait cycle to wait for I/O from device

 Reasonable if device is fast

 But inefficient if device slow

 CPU switches to other tasks?

 But if miss a cycle data overwritten / lost

1.255 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupts

 Polling can happen in 3 instruction cycles

 Read status, logical-and to extract status bit, branch if not zero

 How to be more efficient if non-zero infrequently?

 CPU Interrupt-request line triggered by I/O device

 Checked by processor after each instruction

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Context switch at start and end

 Based on priority

 Some nonmaskable

 Interrupt chaining if more than one device at same interrupt

number

1.256 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupt-Driven I/O Cycle

1.257 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupts (Cont.)

 Interrupt mechanism also used for exceptions

 Terminate process, crash system due to hardware error

 Page fault executes when memory access error

 System call executes via trap to trigger kernel to execute

request

 Multi-CPU systems can process interrupts concurrently

 If operating system designed to handle it

 Used for time-sensitive processing, frequent, must be fast

1.258 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Memory Access

 Used to avoid programmed I/O (one byte at a time) for large data

movement

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and

memory

 OS writes DMA command block into memory

 Source and destination addresses

 Read or write mode

 Count of bytes

 Writes location of command block to DMA controller

 Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

 When done, interrupts to signal completion

 Version that is aware of virtual addresses can be even more efficient -

DVMA

1.259 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Six Step Process to Perform DMA Transfer

1.260 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 New devices talking already-implemented protocols need no extra

work

 Each OS has its own I/O subsystem structures and device driver

frameworks

 Devices vary in many dimensions

 Character-stream or block

 Sequential or random-access

 Synchronous or asynchronous (or both)

 Sharable or dedicated

 Speed of operation

 read-write, read only, or write only

1.261 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Kernel I/O Structure

1.262 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Characteristics of I/O Devices

1.263 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Characteristics of I/O Devices (Cont.)

 Subtleties of devices handled by device drivers

 Broadly I/O devices can be grouped by the OS into

 Block I/O

 Character I/O (Stream)

 Memory-mapped file access

 Network sockets

 For direct manipulation of I/O device specific characteristics,

usually an escape / back door

 Unix ioctl() call to send arbitrary bits to a device control

register and data to device data register

1.264 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Block and Character Devices

 Block devices include disk drives

 Commands include read, write, seek

 Raw I/O, direct I/O, or file-system access

 Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via

demand paging

 DMA

 Character devices include keyboards, mice, serial ports

 Commands include get(), put()

 Libraries layered on top allow line editing

1.265 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network Devices

 Varying enough from block and character to have own

interface

 Linux, Unix, Windows and many others include socket

interface

 Separates network protocol from network operation

 Includes select() functionality

 Approaches vary widely (pipes, FIFOs, streams, queues,

mailboxes)

1.266 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Clocks and Timers

 Provide current time, elapsed time, timer

 Normal resolution about 1/60 second

 Some systems provide higher-resolution timers

 Programmable interval timer used for timings, periodic

interrupts

 ioctl() (on UNIX) covers odd aspects of I/O such as

clocks and timers

1.267 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Nonblocking and Asynchronous I/O

 Blocking - process suspended until I/O completed

 Easy to use and understand

 Insufficient for some needs

 Nonblocking - I/O call returns as much as available

 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

 select() to find if data ready then read() or write()

to transfer

 Asynchronous - process runs while I/O executes

 Difficult to use

 I/O subsystem signals process when I/O completed

1.268 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two I/O Methods

Synchronous Asynchronous

1.269 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Vectored I/O

 Vectored I/O allows one system call to perform multiple I/O

operations

 For example, Unix readve() accepts a vector of multiple

buffers to read into or write from

 This scatter-gather method better than multiple individual I/O

calls

 Decreases context switching and system call overhead

 Some versions provide atomicity

 Avoid for example worry about multiple threads

changing data as reads / writes occurring

1.270 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Kernel I/O Subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Some implement Quality Of Service (i.e. IPQOS)

 Buffering - store data in memory while transferring between devices

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

 Double buffering – two copies of the data

 Kernel and user

 Varying sizes

 Full / being processed and not-full / being used

 Copy-on-write can be used for efficiency in some cases

1.271 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Device-status Table

1.272 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Kernel I/O Subsystem

 Caching - faster device holding copy of data

 Always just a copy

 Key to performance

 Sometimes combined with buffering

 Spooling - hold output for a device

 If device can serve only one request at a time

 i.e., Printing

 Device reservation - provides exclusive access to a device

 System calls for allocation and de-allocation

 Watch out for deadlock

1.273 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Error Handling

 OS can recover from disk read, device unavailable, transient

write failures

 Retry a read or write, for example

 Some systems more advanced – Solaris FMA, AIX

 Track error frequencies, stop using device with

increasing frequency of retry-able errors

 Most return an error number or code when I/O request fails

 System error logs hold problem reports

1.274 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Protection

 User process may accidentally or purposefully attempt to

disrupt normal operation via illegal I/O instructions

 All I/O instructions defined to be privileged

 I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must

be protected too

1.275 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of a System Call to Perform I/O

1.276 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

 Determine device holding file

 Translate name to device representation

 Physically read data from disk into buffer

 Make data available to requesting process

 Return control to process

1.277 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Life Cycle of An I/O Request

